Pytorch可視化的幾種實現方法

一,利用 tensorboardX 可視化網絡結構

參考 https://github.com/lanpa/tensorboardX
支持scalar, image, figure, histogram, audio, text, graph, onnx_graph, embedding, pr_curve and video summaries.
例子要求tensorboardX>=1.2 and pytorch>=0.4

安裝

pip install tensorboardXpip install git+https://github.com/lanpa/tensorboardX

例子

# demo.py

import torch
import torchvision.utils as vutils
import numpy as np
import torchvision.models as models
from torchvision import datasets
from tensorboardX import SummaryWriter

resnet18 = models.resnet18(False)
writer = SummaryWriter()
sample_rate = 44100
freqs = [262, 294, 330, 349, 392, 440, 440, 440, 440, 440, 440]

for n_iter in range(100):

    dummy_s1 = torch.rand(1)
    dummy_s2 = torch.rand(1)
    # data grouping by `slash`
    writer.add_scalar('data/scalar1', dummy_s1[0], n_iter)
    writer.add_scalar('data/scalar2', dummy_s2[0], n_iter)

    writer.add_scalars('data/scalar_group', {'xsinx': n_iter * np.sin(n_iter),
                                             'xcosx': n_iter * np.cos(n_iter),
                                             'arctanx': np.arctan(n_iter)}, n_iter)

    dummy_img = torch.rand(32, 3, 64, 64)  # output from network
    if n_iter % 10 == 0:
        x = vutils.make_grid(dummy_img, normalize=True, scale_each=True)
        writer.add_image('Image', x, n_iter)

        dummy_audio = torch.zeros(sample_rate * 2)
        for i in range(x.size(0)):
            # amplitude of sound should in [-1, 1]
            dummy_audio[i] = np.cos(freqs[n_iter // 10] * np.pi * float(i) / float(sample_rate))
        writer.add_audio('myAudio', dummy_audio, n_iter, sample_rate=sample_rate)

        writer.add_text('Text', 'text logged at step:' + str(n_iter), n_iter)

        for name, param in resnet18.named_parameters():
            writer.add_histogram(name, param.clone().cpu().data.numpy(), n_iter)

        # needs tensorboard 0.4RC or later
        writer.add_pr_curve('xoxo', np.random.randint(2, size=100), np.random.rand(100), n_iter)

dataset = datasets.MNIST('mnist', train=False, download=True)
images = dataset.test_data[:100].float()
label = dataset.test_labels[:100]

features = images.view(100, 784)
writer.add_embedding(features, metadata=label, label_img=images.unsqueeze(1))

# export scalar data to JSON for external processing
writer.export_scalars_to_json("./all_scalars.json")
writer.close()

運行: python demo.py 會出現runs文件夾,然後在cd到工程目錄運行tensorboard --logdir runs

結果:

在這裡插入圖片描述

二,利用 vistom 可視化

參考:https://github.com/facebookresearch/visdom

安裝和啟動
安裝: pip install visdom
啟動:python -m visdom.server示例

    from visdom import Visdom
    #單張
    viz.image(
        np.random.rand(3, 512, 256),
        opts=dict(title=\\\\\'Random!\\\\\', caption=\\\\\'How random.\\\\\'),
    )
    #多張
    viz.images(
        np.random.randn(20, 3, 64, 64),
        opts=dict(title=\\\\\'Random images\\\\\', caption=\\\\\'How random.\\\\\')
    )

在這裡插入圖片描述

from visdom import Visdom

image = np.zeros((100,100))
vis = Visdom() 
vis.text("hello world!!!")
vis.image(image)
vis.line(Y = np.column_stack((np.random.randn(10),np.random.randn(10))), 
         X = np.column_stack((np.arange(10),np.arange(10))),
         opts = dict(title = "line", legend=["Test","Test1"]))

在這裡插入圖片描述

三,利用pytorchviz可視化網絡結構

參考:https://github.com/szagoruyko/pytorchviz

到此這篇關於Pytorch可視化的幾種實現方法的文章就介紹到這瞭,更多相關Pytorch可視化內容請搜索WalkonNet以前的文章或繼續瀏覽下面的相關文章希望大傢以後多多支持WalkonNet!

推薦閱讀: