tensorflow2.0實現復雜神經網絡(多輸入多輸出nn,Resnet)

常見的‘融合’操作

復雜神經網絡模型的實現離不開”融合”操作。常見融合操作如下:

(1)求和,求差

# 求和
layers.Add(inputs)
# 求差
layers.Subtract(inputs)

inputs: 一個輸入張量的列表(列表大小至少為 2),列表的shape必須一樣才能進行求和(求差)操作。

例子:

input1 = keras.layers.Input(shape=(16,))
x1 = keras.layers.Dense(8, activation='relu')(input1)
input2 = keras.layers.Input(shape=(32,))
x2 = keras.layers.Dense(8, activation='relu')(input2)
added = keras.layers.add([x1, x2])

out = keras.layers.Dense(4)(added)
model = keras.models.Model(inputs=[input1, input2], outputs=out)

(2)乘法

# 輸入張量的逐元素乘積(對應位置元素相乘,輸入維度必須相同)
layers.multiply(inputs)
# 輸入張量樣本之間的點積
layers.dot(inputs, axes, normalize=False) 

dot即矩陣乘法,例子1:

x = np.arange(10).reshape(1, 5, 2)

y = np.arange(10, 20).reshape(1, 2, 5)

# 三維的輸入做dot通常像這樣指定axes,表示矩陣的第一維度和第二維度參與矩陣乘法,第0維度是batchsize
tf.keras.layers.Dot(axes=(1, 2))([x, y])
# 輸出如下:
<tf.Tensor: shape=(1, 2, 2), dtype=int64, numpy=
array([[[260, 360],
  [320, 445]]])>

例子2:

x1 = tf.keras.layers.Dense(8)(np.arange(10).reshape(5, 2))
x2 = tf.keras.layers.Dense(8)(np.arange(10, 20).reshape(5, 2))
dotted = tf.keras.layers.Dot(axes=1)([x1, x2])
dotted.shape
TensorShape([5, 1])

(3)聯合:

# 所有輸入張量通過 axis 軸串聯起來的輸出張量。
layers.add(inputs,axis=-1)
  • inputs: 一個列表的輸入張量(列表大小至少為 2)。
  • axis: 串聯的軸。

例子:

x1 = tf.keras.layers.Dense(8)(np.arange(10).reshape(5, 2))
x2 = tf.keras.layers.Dense(8)(np.arange(10, 20).reshape(5, 2))
concatted = tf.keras.layers.Concatenate()([x1, x2])
concatted.shape
TensorShape([5, 16])

(4)統計操作

求均值layers.Average()

input1 = tf.keras.layers.Input(shape=(16,))
x1 = tf.keras.layers.Dense(8, activation='relu')(input1)
input2 = tf.keras.layers.Input(shape=(32,))
x2 = tf.keras.layers.Dense(8, activation='relu')(input2)
avg = tf.keras.layers.Average()([x1, x2])
# x_1 x_2 的均值作為輸出
print(avg)
# <tf.Tensor 'average/Identity:0' shape=(None, 8) dtype=float32>

out = tf.keras.layers.Dense(4)(avg)
model = tf.keras.models.Model(inputs=[input1, input2], outputs=out)

layers.Maximum()用法相同。

具有多個輸入和輸出的模型

假設要構造這樣一個模型:

(1)模型具有以下三個輸入

工單標題(文本輸入),工單的文本正文(文本輸入),以及用戶添加的任何標簽(分類輸入)

(2)模型將具有兩個輸出:

  • 介於 0 和 1 之間的優先級分數(標量 Sigmoid 輸出)
  • 應該處理工單的部門(部門范圍內的 Softmax 輸出)。

模型大概長這樣:

在這裡插入圖片描述

接下來開始創建這個模型。

(1)模型的輸入

num_tags = 12
num_words = 10000
num_departments = 4

title_input = keras.Input(shape=(None,), name="title") # Variable-length sequence of ints
body_input = keras.Input(shape=(None,), name="body") # Variable-length sequence of ints
tags_input = keras.Input(shape=(num_tags,), name="tags") # Binary vectors of size `num_tags`

(2)將輸入的每一個詞進行嵌入成64-dimensional vector

title_features = layers.Embedding(num_words,64)(title_input)
body_features = layers.Embedding(num_words,64)(body_input)

(3)處理結果輸入LSTM模型,得到 128-dimensional vector

title_features = layers.LSTM(128)(title_features)
body_features = layers.LSTM(32)(body_features)

(4)concatenate融合所有的特征

x = layers.concatenate([title_features, body_features, tags_input])

(5)模型的輸出

# 輸出1,回歸問題
priority_pred = layers.Dense(1,name="priority")(x)

# 輸出2,分類問題
department_pred = layers.Dense(num_departments,name="department")(x)

(6)定義模型

model = keras.Model(
 inputs=[title_input, body_input, tags_input],
 outputs=[priority_pred, department_pred],
)

(7)模型編譯

編譯此模型時,可以為每個輸出分配不同的損失。甚至可以為每個損失分配不同的權重,以調整其對總訓練損失的貢獻。

model.compile(
 optimizer=keras.optimizers.RMSprop(1e-3),
 loss={
  "priority": keras.losses.BinaryCrossentropy(from_logits=True),
  "department": keras.losses.CategoricalCrossentropy(from_logits=True),
 },
 loss_weights=[1.0, 0.2],
)

(8)模型的訓練

# Dummy input data
title_data = np.random.randint(num_words, size=(1280, 10))
body_data = np.random.randint(num_words, size=(1280, 100))
tags_data = np.random.randint(2, size=(1280, num_tags)).astype("float32")

# Dummy target data
priority_targets = np.random.random(size=(1280, 1))
dept_targets = np.random.randint(2, size=(1280, num_departments))

# 通過字典的形式將數據fit到模型
model.fit(
 {"title": title_data, "body": body_data, "tags": tags_data},
 {"priority": priority_targets, "department": dept_targets},
 epochs=2,
 batch_size=32,
)

ResNet 模型

通過add來實現融合操作,模型的基本結構如下:

# 實現第一個塊
_input = keras.Input(shape=(32,32,3))
x = layers.Conv2D(32,3,activation='relu')(_input)
x = layers.Conv2D(64,3,activation='relu')(x)
block1_output = layers.MaxPooling2D(3)(x)

# 實現第二個塊
x = layers.Conv2D(64,3,padding='same',activation='relu')(block1_output)
x = layers.Conv2D(64,3,padding='same',activation='relu')(x)
block2_output = layers.add([x,block1_output])


# 實現第三個塊
x = layers.Conv2D(64, 3, activation="relu", padding="same")(block2_output)
x = layers.Conv2D(64, 3, activation="relu", padding="same")(x)
block_3_output = layers.add([x, block2_output])

# 進入全連接層
x = layers.Conv2D(64,3,activation='relu')(block_3_output)
x = layers.GlobalAveragePooling2D()(x)
x = layers.Dense(256, activation="relu")(x)
x = layers.Dropout(0.5)(x)
outputs = layers.Dense(10)(x)

在這裡插入圖片描述

模型的定義與編譯:

model = keras.Model(_input,outputs,name='resnet')

model.compile(
 optimizer=keras.optimizers.RMSprop(1e-3),
 loss='sparse_categorical_crossentropy',
 metrics=["acc"],
)

模型的訓練

(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
# 歸一化
x_train = x_train.astype("float32") / 255
x_test = x_test.astype("float32") / 255
model.fit(tf.expand_dims(x_train,-1), y_train, batch_size=64, epochs=1, validation_split=0.2)

註:當loss = =keras.losses.CategoricalCrossentropy(from_logits=True)時,需對標簽進行one-hot:

y_train = keras.utils.to_categorical(y_train, 10)

到此這篇關於tensorflow2.0實現復雜神經網絡(多輸入多輸出nn,Resnet)的文章就介紹到這瞭,更多相關tensorflow2.0復雜神經網絡內容請搜索WalkonNet以前的文章或繼續瀏覽下面的相關文章希望大傢以後多多支持WalkonNet!

推薦閱讀: