Vue批量更新dom的實現步驟
場景介紹
在一個SFC(single file component,單文件組件)中,我們經常會寫這樣的邏輯:
<template> <div> <span>{{ a }}</span> <span>{{ b }}</span> </div> </template> <script type="javascript"> export default { data() { return { a: 0, b: 0 } }, created() { // some logic code this.a = 1 this.b = 2 } } </script>
你可能知道,在完成this.a和this.b的賦值操作後,Vue會將this.a和this.b相應的dom更新函數放到一個微任務中。等待主線程的同步任務執行完畢後,該微任務會出隊並執行。我們看看Vue的官方文檔”深入響應式原理-聲明響應式property”一節中,是怎麼進行描述的:
可能你還沒有註意到,Vue 在更新 DOM 時是異步執行的。隻要偵聽到數據變化,Vue 將開啟一個隊列,並緩沖在同一事件循環中發生的所有數據變更。
那麼,Vue是怎麼實現這一能力的呢?為瞭回答這個問題,我們需要深入Vue源碼的核心部分——響應式原理。
深入響應式
我們首先看一看在我們對this.a和this.b進行賦值操作以後,發生瞭什麼。如果使用Vue CLI進行開發,在main.js文件中,會有一個new Vue()的實例化操作。由於Vue的源碼是使用flow寫的,無形中增加瞭理解成本。為瞭方便,我們直接看npm vue包中dist文件夾中的vue.js源碼。搜索‘function Vue’,找到瞭以下源碼:
function Vue (options) { if (!(this instanceof Vue) ) { warn('Vue is a constructor and should be called with the `new` keyword'); } this._init(options); }
非常簡單的源碼,源碼真的沒有我們想象中那麼難!帶著這樣的意外驚喜,我們繼續找到_init函數,看看這個函數做瞭什麼:
Vue.prototype._init = function (options) { var vm = this; // a uid vm._uid = uid$3++; var startTag, endTag; /* istanbul ignore if */ if (config.performance && mark) { startTag = "vue-perf-start:" + (vm._uid); endTag = "vue-perf-end:" + (vm._uid); mark(startTag); } // a flag to avoid this being observed vm._isVue = true; // merge options if (options && options._isComponent) { // optimize internal component instantiation // since dynamic options merging is pretty slow, and none of the // internal component options needs special treatment. initInternalComponent(vm, options); } else { vm.$options = mergeOptions( resolveConstructorOptions(vm.constructor), options || {}, vm ); } /* istanbul ignore else */ { initProxy(vm); } // expose real self vm._self = vm; initLifecycle(vm); initEvents(vm); initRender(vm); callHook(vm, 'beforeCreate'); initInjections(vm); // resolve injections before data/props initState(vm); initProvide(vm); // resolve provide after data/props callHook(vm, 'created'); /* istanbul ignore if */ if (config.performance && mark) { vm._name = formatComponentName(vm, false); mark(endTag); measure(("vue " + (vm._name) + " init"), startTag, endTag); } if (vm.$options.el) { vm.$mount(vm.$options.el); } }
我們先不管上面的一堆判斷,直接拉到下面的主邏輯。可以看到,_init函數先後執行瞭initLifeCycle、initEvents、initRender、callHook、initInjections、initState、initProvide以及第二次callHook函數。從函數的命名來看,我們可以知道具體的意思。大體來說,這段代碼分為以下兩個部分
- 在完成初始化生命周期、事件鉤子以及渲染函數後,進入beforeCreate生命周期(執行beforeCreate函數)
- 在完成初始化註入值、狀態以及提供值之後,進入created生命周期(執行created函數)
其中,我們關心的數據響應式原理部分在initState函數中,我們看看這個函數做瞭什麼:
function initState (vm) { vm._watchers = []; var opts = vm.$options; if (opts.props) { initProps(vm, opts.props); } if (opts.methods) { initMethods(vm, opts.methods); } if (opts.data) { initData(vm); } else { observe(vm._data = {}, true /* asRootData */); } if (opts.computed) { initComputed(vm, opts.computed); } if (opts.watch && opts.watch !== nativeWatch) { initWatch(vm, opts.watch); } }
這裡我們看到瞭在書寫SFC文件時常常見到的幾個配置項:props、methods、data、computed和watch。我們將註意力集中到opts.data部分,這一部分執行瞭initData函數:
function initData (vm) { var data = vm.$options.data; data = vm._data = typeof data === 'function' ? getData(data, vm) : data || {}; if (!isPlainObject(data)) { data = {}; warn( 'data functions should return an object:\n' + 'https://vuejs.org/v2/guide/components.html#data-Must-Be-a-Function', vm ); } // proxy data on instance var keys = Object.keys(data); var props = vm.$options.props; var methods = vm.$options.methods; var i = keys.length; while (i--) { var key = keys[i]; { if (methods && hasOwn(methods, key)) { warn( ("Method \"" + key + "\" has already been defined as a data property."), vm ); } } if (props && hasOwn(props, key)) { warn( "The data property \"" + key + "\" is already declared as a prop. " + "Use prop default value instead.", vm ); } else if (!isReserved(key)) { proxy(vm, "_data", key); } } // observe data observe(data, true /* asRootData */); }
我們在寫data配置項時,會將其定義為函數,因此這裡執行瞭getData函數:
function getData (data, vm) { // #7573 disable dep collection when invoking data getters pushTarget(); try { return data.call(vm, vm) } catch (e) { handleError(e, vm, "data()"); return {} } finally { popTarget(); } }
getData函數做的事情非常簡單,就是在組件實例上下文中執行data函數。註意,在執行data函數前後,分別執行瞭pushTarget函數和popTarget函數,這兩個函數我們後面再講。
執行getData函數後,我們回到initData函數,後面有一個循環的錯誤判斷,暫時不用管。於是我們來到瞭observe函數:
function observe (value, asRootData) { if (!isObject(value) || value instanceof VNode) { return } var ob; if (hasOwn(value, '__ob__') && value.__ob__ instanceof Observer) { ob = value.__ob__; } else if ( shouldObserve && !isServerRendering() && (Array.isArray(value) || isPlainObject(value)) && Object.isExtensible(value) && !value._isVue ) { ob = new Observer(value); } if (asRootData && ob) { ob.vmCount++; } return ob }
observe函數為data對象創建瞭一個觀察者(ob),也就是實例化Observer,實例化Observer具體做瞭什麼呢?我們繼續看源碼:
var Observer = function Observer (value) { this.value = value; this.dep = new Dep(); this.vmCount = 0; def(value, '__ob__', this); if (Array.isArray(value)) { if (hasProto) { protoAugment(value, arrayMethods); } else { copyAugment(value, arrayMethods, arrayKeys); } this.observeArray(value); } else { this.walk(value); } }
正常情況下,因為我們定義的data函數返回的都是一個對象,所以這裡我們先不管對數組的處理。那麼就是繼續執行walk函數:
Observer.prototype.walk = function walk (obj) { var keys = Object.keys(obj); for (var i = 0; i < keys.length; i++) { defineReactive$$1(obj, keys[i]); } }
對於data函數返回的對象,即組件實例的data對象中的每個可枚舉屬性,執行defineReactive$$1函數:
function defineReactive$$1 ( obj, key, val, customSetter, shallow ) { var dep = new Dep(); var property = Object.getOwnPropertyDescriptor(obj, key); if (property && property.configurable === false) { return } // cater for pre-defined getter/setters var getter = property && property.get; var setter = property && property.set; if ((!getter || setter) && arguments.length === 2) { val = obj[key]; } var childOb = !shallow && observe(val); Object.defineProperty(obj, key, { enumerable: true, configurable: true, get: function reactiveGetter () { var value = getter ? getter.call(obj) : val; if (Dep.target) { dep.depend(); if (childOb) { childOb.dep.depend(); if (Array.isArray(value)) { dependArray(value); } } } return value }, set: function reactiveSetter (newVal) { var value = getter ? getter.call(obj) : val; /* eslint-disable no-self-compare */ if (newVal === value || (newVal !== newVal && value !== value)) { return } /* eslint-enable no-self-compare */ if (customSetter) { customSetter(); } // #7981: for accessor properties without setter if (getter && !setter) { return } if (setter) { setter.call(obj, newVal); } else { val = newVal; } childOb = !shallow && observe(newVal); dep.notify(); } }); }
在defineReactive$$1函數中,首先實例化一個依賴收集器。然後使用Object.defineProperty重新定義對象屬性的getter(即上面的get函數)和setter(即上面的set函數)。
觸發getter
getter和setter某種意義上可以理解為回調函數,當讀取對象某個屬性的值時,會觸發get函數(即getter);當設置對象某個屬性的值時,會觸發set函數(即setter)。我們回到最開始的例子:
<template> <div> <span>{{ a }}</span> <span>{{ b }}</span> </div> </template> <script type="javascript"> export default { data() { return { a: 0, b: 0 } }, created() { // some logic code this.a = 1 this.b = 2 } } </script>
這裡有設置this對象的屬性a和屬性b的值,因此會觸發setter。我們把上面set函數代碼單獨拿出來:
function reactiveSetter (newVal) { var value = getter ? getter.call(obj) : val; /* eslint-disable no-self-compare */ if (newVal === value || (newVal !== newVal && value !== value)) { return } /* eslint-enable no-self-compare */ if (customSetter) { customSetter(); } // #7981: for accessor properties without setter if (getter && !setter) { return } if (setter) { setter.call(obj, newVal); } else { val = newVal; } childOb = !shallow && observe(newVal); dep.notify(); }
setter先執行瞭getter:
function reactiveGetter () { var value = getter ? getter.call(obj) : val; if (Dep.target) { dep.depend(); if (childOb) { childOb.dep.depend(); if (Array.isArray(value)) { dependArray(value); } } } return value }
getter先檢測Dep.target是否存在。在前面執行getData函數的時候,Dep.target的初始值為null,它在什麼時候被賦值瞭呢?我們前面講getData函數的時候,有看到一個pushTarget函數和popTarget函數,這兩個函數的源碼如下:
Dep.target = null; var targetStack = []; function pushTarget (target) { targetStack.push(target); Dep.target = target; } function popTarget () { targetStack.pop(); Dep.target = targetStack[targetStack.length - 1]; }
想要正常執行getter,就需要先執行pushTarget函數。我們找找pushTarget函數在哪裡執行的。在vue.js中搜索pushTarget,我們找到瞭5個地方,除去定義的地方,執行的地方有4個。
第一個執行pushTarget函數的地方。這是一個處理錯誤的函數,正常邏輯不會觸發:
function handleError (err, vm, info) { // Deactivate deps tracking while processing error handler to avoid possible infinite rendering. // See: https://github.com/vuejs/vuex/issues/1505 pushTarget(); try { if (vm) { var cur = vm; while ((cur = cur.$parent)) { var hooks = cur.$options.errorCaptured; if (hooks) { for (var i = 0; i < hooks.length; i++) { try { var capture = hooks[i].call(cur, err, vm, info) === false; if (capture) { return } } catch (e) { globalHandleError(e, cur, 'errorCaptured hook'); } } } } } globalHandleError(err, vm, info); } finally { popTarget(); } }
第二個執行pushTarget的地方。這是調用對應的鉤子函數。在執行到對應的鉤子函數時會觸發。不過,我們現在的操作介於beforeCreate鉤子和created鉤子之間,還沒有觸發:
function callHook (vm, hook) { // #7573 disable dep collection when invoking lifecycle hooks pushTarget(); var handlers = vm.$options[hook]; var info = hook + " hook"; if (handlers) { for (var i = 0, j = handlers.length; i < j; i++) { invokeWithErrorHandling(handlers[i], vm, null, vm, info); } } if (vm._hasHookEvent) { vm.$emit('hook:' + hook); } popTarget(); }
第三個執行pushTarget的地方。這是實例化watcher時執行的函數。檢查前面的代碼,我們似乎也沒有看到new Watcher的操作:
Watcher.prototype.get = function get () { pushTarget(this); var value; var vm = this.vm; try { value = this.getter.call(vm, vm); } catch (e) { if (this.user) { handleError(e, vm, ("getter for watcher \"" + (this.expression) + "\"")); } else { throw e } } finally { // "touch" every property so they are all tracked as // dependencies for deep watching if (this.deep) { traverse(value); } popTarget(); this.cleanupDeps(); } return value }
第四個執行pushTarget的地方,這就是前面的getData函數。但是getData函數的執行位於defineReactive$$1函數之前。在執行完getData函數以後,Dep.target已經被重置為null瞭。
function getData (data, vm) { // #7573 disable dep collection when invoking data getters pushTarget(); try { return data.call(vm, vm) } catch (e) { handleError(e, vm, "data()"); return {} } finally { popTarget(); } }
看起來,直接觸發setter並不能讓getter中的邏輯正常執行。並且,我們還發現,由於setter中也有Dep.target的判斷,所以如果我們找不到Dep.target的來源,setter的邏輯也無法繼續往下走。
尋找Dep.target
那麼,到底Dep.target的值是從哪裡來的呢?不用著急,我們回到_init函數的操作繼續往下看:
Vue.prototype._init = function (options) { var vm = this; // a uid vm._uid = uid$3++; var startTag, endTag; /* istanbul ignore if */ if (config.performance && mark) { startTag = "vue-perf-start:" + (vm._uid); endTag = "vue-perf-end:" + (vm._uid); mark(startTag); } // a flag to avoid this being observed vm._isVue = true; // merge options if (options && options._isComponent) { // optimize internal component instantiation // since dynamic options merging is pretty slow, and none of the // internal component options needs special treatment. initInternalComponent(vm, options); } else { vm.$options = mergeOptions( resolveConstructorOptions(vm.constructor), options || {}, vm ); } /* istanbul ignore else */ { initProxy(vm); } // expose real self vm._self = vm; initLifecycle(vm); initEvents(vm); initRender(vm); callHook(vm, 'beforeCreate'); initInjections(vm); // resolve injections before data/props initState(vm); initProvide(vm); // resolve provide after data/props callHook(vm, 'created'); /* istanbul ignore if */ if (config.performance && mark) { vm._name = formatComponentName(vm, false); mark(endTag); measure(("vue " + (vm._name) + " init"), startTag, endTag); } if (vm.$options.el) { vm.$mount(vm.$options.el); } }
我們發現,在_init函數的最後,執行瞭vm.$mount函數,這個函數做瞭什麼呢?
Vue.prototype.$mount = function ( el, hydrating ) { el = el && inBrowser ? query(el) : undefined; return mountComponent(this, el, hydrating) }
我們繼續進入mountComponent函數看看:
function mountComponent ( vm, el, hydrating ) { vm.$el = el; if (!vm.$options.render) { vm.$options.render = createEmptyVNode; { /* istanbul ignore if */ if ((vm.$options.template && vm.$options.template.charAt(0) !== '#') || vm.$options.el || el) { warn( 'You are using the runtime-only build of Vue where the template ' + 'compiler is not available. Either pre-compile the templates into ' + 'render functions, or use the compiler-included build.', vm ); } else { warn( 'Failed to mount component: template or render function not defined.', vm ); } } } callHook(vm, 'beforeMount'); var updateComponent; /* istanbul ignore if */ if (config.performance && mark) { updateComponent = function () { var name = vm._name; var id = vm._uid; var startTag = "vue-perf-start:" + id; var endTag = "vue-perf-end:" + id; mark(startTag); var vnode = vm._render(); mark(endTag); measure(("vue " + name + " render"), startTag, endTag); mark(startTag); vm._update(vnode, hydrating); mark(endTag); measure(("vue " + name + " patch"), startTag, endTag); }; } else { updateComponent = function () { vm._update(vm._render(), hydrating); }; } // we set this to vm._watcher inside the watcher's constructor // since the watcher's initial patch may call $forceUpdate (e.g. inside child // component's mounted hook), which relies on vm._watcher being already defined new Watcher(vm, updateComponent, noop, { before: function before () { if (vm._isMounted && !vm._isDestroyed) { callHook(vm, 'beforeUpdate'); } } }, true /* isRenderWatcher */); hydrating = false; // manually mounted instance, call mounted on self // mounted is called for render-created child components in its inserted hook if (vm.$vnode == null) { vm._isMounted = true; callHook(vm, 'mounted'); } return vm }
我們驚喜地發現,這裡有一個new Watcher的操作!真是山重水復疑無路,柳暗花明又一村!這裡實例化的watcher是一個用來更新dom的watcher。他會依次讀取SFC文件中的template部分中的所有值。這也就意味著會觸發對應的getter。
由於new Watcher會執行watcher.get函數,該函數執行pushTarget函數,於是Dep.target被賦值。getter內部的邏輯順利執行。
getter
至此,我們終於到瞭Vue的響應式原理的核心。我們再次回到getter,看一看有瞭Dep.target以後,getter做瞭什麼:
function reactiveGetter () { var value = getter ? getter.call(obj) : val; if (Dep.target) { dep.depend(); if (childOb) { childOb.dep.depend(); if (Array.isArray(value)) { dependArray(value); } } } return value }
同樣地,我們先不關註提高代碼健壯性的細節處理,直接看主線。可以看到,當Dep.target存在時,執行瞭dep.depend函數。這個函數做瞭什麼呢?我們看看代碼:
Dep.prototype.depend = function depend () { if (Dep.target) { Dep.target.addDep(this); } }
做的事情也非常簡單。就是執行瞭Dep.target.addDep函數。但是Dep.target其實是一個watcher,所以我們要回到Watcher的代碼:
Watcher.prototype.addDep = function addDep (dep) { var id = dep.id; if (!this.newDepIds.has(id)) { this.newDepIds.add(id); this.newDeps.push(dep); if (!this.depIds.has(id)) { dep.addSub(this); } } }
同樣地,我們先忽略一些次要的邏輯處理,把註意力集中到dep.addSub函數上:
Dep.prototype.addSub = function addSub (sub) { this.subs.push(sub); }
也是非常簡單的邏輯,把watcher作為一個訂閱者推入數組中緩存。至此,getter的整個邏輯走完。此後執行popTarget函數,Dep.target被重置為null
setter
我們再次回到業務代碼:
<template> <div> <span>{{ a }}</span> <span>{{ b }}</span> </div> </template> <script type="javascript"> export default { data() { return { a: 0, b: 0 } }, created() { // some logic code this.a = 1 this.b = 2 } } </script>
在created生命周期中,我們觸發瞭兩次setter,setter執行的邏輯如下:
function reactiveSetter (newVal) { var value = getter ? getter.call(obj) : val; /* eslint-disable no-self-compare */ if (newVal === value || (newVal !== newVal && value !== value)) { return } /* eslint-enable no-self-compare */ if (customSetter) { customSetter(); } // #7981: for accessor properties without setter if (getter && !setter) { return } if (setter) { setter.call(obj, newVal); } else { val = newVal; } childOb = !shallow && observe(newVal); dep.notify(); }
這裡,我們隻需要關註setter最後執行的函數:dep.notify()。我們看看這個函數做瞭什麼:
Dep.prototype.notify = function notify () { // stabilize the subscriber list first var subs = this.subs.slice(); if (!config.async) { // subs aren't sorted in scheduler if not running async // we need to sort them now to make sure they fire in correct // order subs.sort(function (a, b) { return a.id - b.id; }); } for (var i = 0, l = subs.length; i < l; i++) { subs[i].update(); } }
This.subs的每一項元素均為一個watcher。在上面getter章節中,我們隻收集到瞭一個watcher。因為觸發瞭兩次setter,所以subs[0].update(),即watcher.update()函數會執行兩次。我們看看這個函數做瞭什麼:
Watcher.prototype.update = function update () { /* istanbul ignore else */ if (this.lazy) { this.dirty = true; } else if (this.sync) { this.run(); } else { queueWatcher(this); } }
按照慣例,我們直接跳入queueWatcher函數:
function queueWatcher (watcher) { var id = watcher.id; if (has[id] == null) { has[id] = true; if (!flushing) { queue.push(watcher); } else { // if already flushing, splice the watcher based on its id // if already past its id, it will be run next immediately. var i = queue.length - 1; while (i > index && queue[i].id > watcher.id) { i--; } queue.splice(i + 1, 0, watcher); } // queue the flush if (!waiting) { waiting = true; if (!config.async) { flushSchedulerQueue(); return } nextTick(flushSchedulerQueue); } } }
由於id相同,所以watcher的回調函數隻會被推入到queue一次。這裡我們再次看到瞭一個熟悉的面孔:nextTick。
function nextTick (cb, ctx) { var _resolve; callbacks.push(function () { if (cb) { try { cb.call(ctx); } catch (e) { handleError(e, ctx, 'nextTick'); } } else if (_resolve) { _resolve(ctx); } }); if (!pending) { pending = true; timerFunc(); } // $flow-disable-line if (!cb && typeof Promise !== 'undefined') { return new Promise(function (resolve) { _resolve = resolve; }) } }
nextTick函數將回調函數再次包裹一層後,執行timerFunc()
var timerFunc; // The nextTick behavior leverages the microtask queue, which can be accessed // via either native Promise.then or MutationObserver. // MutationObserver has wider support, however it is seriously bugged in // UIWebView in iOS >= 9.3.3 when triggered in touch event handlers. It // completely stops working after triggering a few times... so, if native // Promise is available, we will use it: /* istanbul ignore next, $flow-disable-line */ if (typeof Promise !== 'undefined' && isNative(Promise)) { var p = Promise.resolve(); timerFunc = function () { p.then(flushCallbacks); // In problematic UIWebViews, Promise.then doesn't completely break, but // it can get stuck in a weird state where callbacks are pushed into the // microtask queue but the queue isn't being flushed, until the browser // needs to do some other work, e.g. handle a timer. Therefore we can // "force" the microtask queue to be flushed by adding an empty timer. if (isIOS) { setTimeout(noop); } }; isUsingMicroTask = true; } else if (!isIE && typeof MutationObserver !== 'undefined' && ( isNative(MutationObserver) || // PhantomJS and iOS 7.x MutationObserver.toString() === '[object MutationObserverConstructor]' )) { // Use MutationObserver where native Promise is not available, // e.g. PhantomJS, iOS7, Android 4.4 // (#6466 MutationObserver is unreliable in IE11) var counter = 1; var observer = new MutationObserver(flushCallbacks); var textNode = document.createTextNode(String(counter)); observer.observe(textNode, { characterData: true }); timerFunc = function () { counter = (counter + 1) % 2; textNode.data = String(counter); }; isUsingMicroTask = true; } else if (typeof setImmediate !== 'undefined' && isNative(setImmediate)) { // Fallback to setImmediate. // Technically it leverages the (macro) task queue, // but it is still a better choice than setTimeout. timerFunc = function () { setImmediate(flushCallbacks); }; } else { // Fallback to setTimeout. timerFunc = function () { setTimeout(flushCallbacks, 0); }; }
timerFunc函數是微任務的平穩降級。他將根據所在環境的支持程度,依次調用Promise、MutationObserver、setImmediate和setTimeout。並在對應的微任務或者模擬微任務隊列中執行回調函數。
function flushSchedulerQueue () { currentFlushTimestamp = getNow(); flushing = true; var watcher, id; // Sort queue before flush. // This ensures that: // 1. Components are updated from parent to child. (because parent is always // created before the child) // 2. A component's user watchers are run before its render watcher (because // user watchers are created before the render watcher) // 3. If a component is destroyed during a parent component's watcher run, // its watchers can be skipped. queue.sort(function (a, b) { return a.id - b.id; }); // do not cache length because more watchers might be pushed // as we run existing watchers for (index = 0; index < queue.length; index++) { watcher = queue[index]; if (watcher.before) { watcher.before(); } id = watcher.id; has[id] = null; watcher.run(); // in dev build, check and stop circular updates. if (has[id] != null) { circular[id] = (circular[id] || 0) + 1; if (circular[id] > MAX_UPDATE_COUNT) { warn( 'You may have an infinite update loop ' + ( watcher.user ? ("in watcher with expression \"" + (watcher.expression) + "\"") : "in a component render function." ), watcher.vm ); break } } } // keep copies of post queues before resetting state var activatedQueue = activatedChildren.slice(); var updatedQueue = queue.slice(); resetSchedulerState(); // call component updated and activated hooks callActivatedHooks(activatedQueue); callUpdatedHooks(updatedQueue); // devtool hook /* istanbul ignore if */ if (devtools && config.devtools) { devtools.emit('flush'); } }
回調函數的核心邏輯是執行watcher.run函數:
Watcher.prototype.run = function run () { if (this.active) { var value = this.get(); if ( value !== this.value || // Deep watchers and watchers on Object/Arrays should fire even // when the value is the same, because the value may // have mutated. isObject(value) || this.deep ) { // set new value var oldValue = this.value; this.value = value; if (this.user) { try { this.cb.call(this.vm, value, oldValue); } catch (e) { handleError(e, this.vm, ("callback for watcher \"" + (this.expression) + "\"")); } } else { this.cb.call(this.vm, value, oldValue); } } } }
執行this.cb函數,即watcher的回調函數。至此,所有的邏輯走完。
總結
我們再次回到業務場景:
<template> <div> <span>{{ a }}</span> <span>{{ b }}</span> </div> </template> <script type="javascript"> export default { data() { return { a: 0, b: 0 } }, created() { // some logic code this.a = 1 this.b = 2 } } </script>
雖然我們觸發瞭兩次setter,但是對應的渲染函數在微任務中卻隻執行瞭一次。也就是說,在dep.notify函數發出通知以後,Vue將對應的watcher進行瞭去重、排隊操作並最終執行回調。
可以看出,兩次賦值操作實際上觸發的是同一個渲染函數,這個渲染函數更新瞭多個dom。這就是所謂的批量更新dom。
到此這篇關於Vue批量更新dom的實現步驟的文章就介紹到這瞭,更多相關Vue批量更新dom 內容請搜索WalkonNet以前的文章或繼續瀏覽下面的相關文章希望大傢以後多多支持WalkonNet!
推薦閱讀:
- Vue中避免濫用this去讀取data中數據
- Vue Computed底層原理深入探究
- 圖解Vue 響應式流程及原理
- Vue2 this 能夠直接獲取到 data 和 methods 的原理分析
- 一文帶你理解 Vue 中的生命周期