基於OpenCV與JVM實現矩陣處理圖像

submat(int rowStart, int rowEnd, int colStart, int colEnd) 函數的返回值是一個矩陣對象。內容是原圖的子矩陣或子區域。

首先我們用imread來讀取圖片,然後輸出矩陣對象本身的一些信息

import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.core.Core;
import org.opencv.core.MatOfInt;
import org.opencv.imgcodecs.Imgcodecs;
import origami.Origami;

public class HelloCv {
    public static void main(String[] args) throws Exception {
        System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
        Mat mat = Imgcodecs.imread("./images/test.jpg",Imgcodecs.IMREAD_GRAYSCALE);
        System.out.println(mat);
    }
}

由於這個矩陣是原始圖片,所以它的isSubmat是false。

現在我們使用submat函數的第一種形式,輸入參數是每一行和每一列的起始和終止值。

圖片裁剪

import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.core.Core;
import org.opencv.core.MatOfInt;
import org.opencv.imgcodecs.Imgcodecs;
import origami.Origami;

public class HelloCv {
    public static void main(String[] args) throws Exception {
        System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
        Mat mat = Imgcodecs.imread("C:/HWKJ/ZRQ/OpenCv/matrixcv/images/test.jpg");
        System.out.println(mat);
        Mat submat = mat.submat(200, 240, 300, 350);
        System.out.println(submat);
    }
}

這裡註意submat裡的尺寸,尺寸根據原圖的尺寸,超出原圖的尺寸會報錯,報錯如下

然後我們輸出裁剪的圖片。

那麼如何確認你想要截取圖片的區域范圍呢?也就是說怎麼確定這四個參數的填寫?我們以下圖為例

截取後的圖片

另外兩種submat方式

Range​(int row,int column)

row:寬開始結束范圍

column:高開始結束范圍

Mat submat2 = mat.submat(new Range(20,300),new Range(100,500));
Imgcodecs.imwrite("./images/output2.png",submat2);

Rect​(int x, int y,int width, int height)

x:橫坐標

y:縱坐標

width :寬

height:高

Mat submat3 = mat.submat(new Rect(0,200,100,100));
//submat3.setTo(new Scalar(255,0,0));//將圖片繪制為藍色
Imgcodecs.imwrite("./images/output3.png",submat3);

打開setTo如下:

Imgcodecs.imwrite("./images/blurtest.png",mat);

完整代碼:

import org.opencv.core.CvType;
import org.opencv.core.Scalar;
import org.opencv.core.Mat;
import org.opencv.core.Rect;
import org.opencv.core.Range;
import org.opencv.core.Core;
import org.opencv.core.Size;
import org.opencv.core.MatOfInt;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
import origami.Origami;

public class HelloCv {
    public static void main(String[] args) throws Exception {
        System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
        Mat mat = Imgcodecs.imread("C:/HWKJ/ZRQ/OpenCv/matrixcv/images/test.jpg");
        System.out.println(mat);
        Mat submat = mat.submat(200, 400, 200, 550);
        //System.out.println(submat);
        Imgcodecs.imwrite("./images/output.png",submat);
        Mat submat2 = mat.submat(new Range(20,300),new Range(100,500));
        Imgcodecs.imwrite("./images/output2.png",submat2);
        Mat submat3 = mat.submat(new Rect(0,200,400,200));
        submat3.setTo(new Scalar(255,0,0));
        Imgcodecs.imwrite("./images/output3.png",submat3);

        //Imgproc.blur(submat,submat,new Size(25.0,25.0));
        Imgcodecs.imwrite("./images/blurtest.png",mat);
    }
}

圖片模糊處理

import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.core.Core;
import org.opencv.core.Size;
import org.opencv.core.MatOfInt;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
import origami.Origami;

public class HelloCv {
    public static void main(String[] args) throws Exception {
        System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
        Mat mat = Imgcodecs.imread("C:/HWKJ/ZRQ/OpenCv/matrixcv/images/test.jpg");
        System.out.println(mat);
        Mat submat = mat.submat(200, 400, 200, 550);
        //System.out.println(submat);
        //Imgcodecs.imwrite("./images/output.png",submat);
        Imgproc.blur(submat,submat,new Size(25.0,25.0));
        System.out.println("after:"+mat);
        Imgcodecs.imwrite("./images/blurtest.png",mat);
    }
}

子矩陣生成矩陣

setTo和copyTo是OpenCv中兩個非常重要的函數。

setTo可以將一個矩陣中的所有像素設置為指定的顏色

copyTo可以將一個已有的矩陣復制到另一個矩陣之中。

第一個顏色值代表藍色的深度,第二個值代表綠色的深度,最後一個值代表紅色的深度。

//獲取紅綠藍
Scalar Red = new Scalar(0,0,255);
Scalar Green = new Scalar(0,255,0);
Scalar Blue = new Scalar(255,0,0);

我們把這些顏色當作RGB的補充色。因此把其他通道設置為最大值255,主通道設置為0。藍綠色是紅色的補充色,所以紅色值通道被設為0,而另外兩個通道為255;

定義藍綠色、品紅色和黃色

Scalar cyan = new Scalar(255,255,0);
Scalar  magena= new Scalar(255,0,255);
Scalar yellow = new Scalar(0,255,255);

下面我們使用setTo將子矩陣設置為給定的Scalar顏色

    private void setColors(Mat mat ,boolean comp,int row){
      for (int i = 0; i <3 ; i++) {
          Mat sub = mat.submat(row*100,row*100+100,i*100,i*100+100);
          if(comp){
             //RGB
             if (i==0){
                 sub.setTo(Red);
             }if (i==1){
                  sub.setTo(Green);
              }if (i==2){
                  sub.setTo(Blue);
              }
          }else {
              //cmy
              if (i==0){
                  sub.setTo(cyan);
              }if (i==1){
                  sub.setTo(magena);
              }if (i==2){
                  sub.setTo(yellow);
              }
          }
      }
  }

接下來,我們創建一個包含三個顏色通道矩陣,並且填充它的第一行和第二行

完整代碼:

import org.opencv.core.CvType;
import org.opencv.core.Scalar;
import org.opencv.core.Mat;
import org.opencv.core.Rect;
import org.opencv.core.Range;
import org.opencv.core.Core;
import org.opencv.core.Size;
import org.opencv.core.MatOfInt;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
import origami.Origami;

public class HelloCv1 {
public static  Scalar Red = new Scalar(0,0,255);
public static   Scalar Green = new Scalar(0,255,0);
public static   Scalar Blue = new Scalar(255,0,0);
public static   Scalar cyan = new Scalar(255,255,0);
public static   Scalar  magena= new Scalar(255,0,255);
public static   Scalar yellow = new Scalar(0,255,255);
    public static void main(String[] args) throws Exception {
        System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
        Mat mat = new Mat(200,300,CvType.CV_8UC3);
        setColors(mat,false,1);
        setColors(mat,true,0);
        Imgcodecs.imwrite("./images/rgbcmy.png",mat);

    }

    static void setColors(Mat mat ,boolean comp,int row){
      for (int i = 0; i <3 ; i++) {
          Mat submat = mat.submat(row*100,row*100+100,i*100,i*100+100);
          if(comp){
             //RGB
             if (i==0){
               submat.setTo(Red);
             }if (i==1){
               submat.setTo(Green);
              }if (i==2){
                submat.setTo(Blue);
              }
          }else {
              //cmy
              if (i==0){
                submat.setTo(cyan);
              }if (i==1){
                submat.setTo(magena);
              }if (i==2){
                submat.setTo(yellow);
              }
          }
      }
  }
}

從圖片子矩陣生成矩陣

首先創建一個大小為200×200的矩陣和子矩陣:一個是主矩陣的上部,一個是主矩陣的下部

int width = 200,height = 200;
Mat mat1 = new Mat(height,width,CvType.CV_8UC3);
Mat top = mat.submat(0,height/2,0,width);
Mat bottom = mat.submat(height/2,height,0,width);

然後加載一個圖片以創建另一個小矩陣,並把它的大小調整為上部(或下部)的子矩陣大小。這裡會引入Imgproc類中的resize函數。

完整代碼:

import org.opencv.core.CvType;
import org.opencv.core.Scalar;
import org.opencv.core.Mat;
import org.opencv.core.Rect;
import org.opencv.core.Range;
import org.opencv.core.Core;
import org.opencv.core.Size;
import org.opencv.core.MatOfInt;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
import origami.Origami;

public class HelloCv1 {
public static  Scalar Red = new Scalar(0,0,255);
public static   Scalar Green = new Scalar(0,255,0);
public static   Scalar Blue = new Scalar(255,0,0);
public static   Scalar cyan = new Scalar(255,255,0);
public static   Scalar  magena= new Scalar(255,0,255);
public static   Scalar yellow = new Scalar(0,255,255);
    public static void main(String[] args) throws Exception {
        System.loadLibrary(Core.NATIVE_LIBRARY_NAME);

        int width = 200,height = 300;
        Mat mat1 = new Mat(height,width,CvType.CV_8UC3);
        Mat top = mat1.submat(0,height/2,0,width);
        Mat bottom = mat1.submat(height/2,height,0,width);

        Mat small = Imgcodecs.imread("./images/test.jpg");
        Imgproc.resize(small,small,top.size());
        small.copyTo(top);
        small.copyTo(bottom);
        Imgcodecs.imwrite("./images/matofpictures.png",mat1);
    }

註意:設置大小的步驟很關鍵。復制能夠成功,是因為小矩陣和子矩陣的大小是完全相同的,因此復制的時候沒有出現任何問題

以上就是基於OpenCV與JVM實現矩陣處理圖像的詳細內容,更多關於OpenCV JVM矩陣處理圖像的資料請關註WalkonNet其它相關文章!

推薦閱讀: