Java字符串編碼解碼性能提升的技巧分享

1.常見字符串編碼

常見的字符串編碼有:

LATIN1 隻能保存ASCII字符,又稱ISO-8859-1。

UTF-8 變長字節編碼,一個字符需要使用1個、2個或者3個byte表示。由於中文通常需要3個字節表示,中文場景UTF-8編碼通常需要更多的空間,替代的方案是GBK/GB2312/GB18030。

UTF-16 2個字節,一個字符需要使用2個byte表示,又稱UCS-2 (2-byte Universal Character Set)。根據大小端的區分,UTF-16有兩種形式,UTF-16BE和UTF-16LE,缺省UTF-16指UTF-16BE。Java語言中的char是UTF-16LE編碼。

GB18030 變長字節編碼,一個字符需要使用1個、2個或者3個byte表示。類似UTF8,中文隻需要2個字符,表示中文更省字節大小,缺點是在國際上不通用。

為瞭計算方便,內存中字符串通常使用等寬字符,Java語言中char和.NET中的char都是使用UTF-16。早期Windows-NT隻支持UTF-16。

2.編碼轉換性能

UTF-16和UTF-8之間轉換比較復雜,通常性能較差。

如下是一個將UTF-16轉換為UTF-8編碼的實現,可以看出算法比較復雜,所以性能較差,這個操作也無法使用vector API做優化。

static int encodeUTF8(char[] utf16, int off, int len, byte[] dest, int dp) {
    int sl = off + len, last_offset = sl - 1;

    while (off < sl) {
        char c = utf16[off++];
        if (c < 0x80) {
            // Have at most seven bits
            dest[dp++] = (byte) c;
        } else if (c < 0x800) {
            // 2 dest, 11 bits
            dest[dp++] = (byte) (0xc0 | (c >> 6));
            dest[dp++] = (byte) (0x80 | (c & 0x3f));
        } else if (c >= '\uD800' && c < '\uE000') {
            int uc;
            if (c < '\uDC00') {
                if (off > last_offset) {
                    dest[dp++] = (byte) '?';
                    return dp;
                }

                char d = utf16[off];
                if (d >= '\uDC00' && d < '\uE000') {
                    uc = (c << 10) + d + 0xfca02400;
                } else {
                    throw new RuntimeException("encodeUTF8 error", new MalformedInputException(1));
                }
            } else {
                uc = c;
            }
            dest[dp++] = (byte) (0xf0 | ((uc >> 18)));
            dest[dp++] = (byte) (0x80 | ((uc >> 12) & 0x3f));
            dest[dp++] = (byte) (0x80 | ((uc >> 6) & 0x3f));
            dest[dp++] = (byte) (0x80 | (uc & 0x3f));
            off++; // 2 utf16
        } else {
            // 3 dest, 16 bits
            dest[dp++] = (byte) (0xe0 | ((c >> 12)));
            dest[dp++] = (byte) (0x80 | ((c >> 6) & 0x3f));
            dest[dp++] = (byte) (0x80 | (c & 0x3f));
        }
    }
    return dp;
}

由於Java中char是UTF-16LE編碼,如果需要將char[]轉換為UTF-16LE編碼的byte[]時,可以使用sun.misc.Unsafe#copyMemory方法快速拷貝。比如:

static int writeUtf16LE(char[] chars, int off, int len, byte[] dest, final int dp) {
    UNSAFE.copyMemory(chars
            , CHAR_ARRAY_BASE_OFFSET + off * 2
            , dest
            , BYTE_ARRAY_BASE_OFFSET + dp
            , len * 2
    );
    dp += len * 2;
    return dp;
}

3.Java String的編碼

不同版本的JDK String的實現不一樣,從而導致有不同的性能表現。char是UTF-16編碼,但String在JDK 9之後內部可以有LATIN1編碼。

3.1. JDK 6之前的String實現

static class String {
    final char[] value;
    final int offset;
    final int count;
}

在Java 6之前,String.subString方法產生的String對象和原來String對象共用一個char[] value,這會導致subString方法返回的String的char[]被引用而無法被GC回收。於是使得很多庫都會針對JDK 6及以下版本避免使用subString方法。

3.2. JDK 7/8的String實現

static class String {
    final char[] value;
}

JDK 7之後,字符串去掉瞭offset和count字段,value.length就是原來的count。這避免瞭subString引用大char[]的問題,優化也更容易,從而JDK7/8中的String操作性能比Java 6有較大提升。

3.3. JDK 9/10/11的實現

static class String {
    final byte code;
    final byte[] value;

    static final byte LATIN1 = 0;
    static final byte UTF16  = 1;
}

JDK 9之後,value類型從char[]變成byte[],增加瞭一個字段code,如果字符全部是ASCII字符,使用value使用LATIN編碼;如果存在任何一個非ASCII字符,則用UTF16編碼。這種混合編碼的方式,使得英文場景占更少的內存。缺點是導致Java 9的String API性能可能不如JDK 8,特別是傳入char[]構造字符串,會被做壓縮為latin編碼的byte[],有些場景會下降10%。

4.快速構造字符串的方法

為瞭實現字符串是不可變特性,構造字符串的時候,會有拷貝的過程,如果要提升構造字符串的開銷,就要避免這樣的拷貝。

比如如下是JDK8的String的一個構造函數的實現

public final class String {
    public String(char value[]) {
        this.value = Arrays.copyOf(value, value.length);
    }
}

在JDK8中,有一個構造函數是不做拷貝的,但這個方法不是public,需要用一個技巧實現MethodHandles.Lookup & LambdaMetafactory綁定反射來調用,文章後面有介紹這個技巧的代碼。

public final class String {
    String(char[] value, boolean share) {
        // assert share : "unshared not supported";
        this.value = value;
    }
}

快速構造字符的方法有三種:

  • 使用MethodHandles.Lookup & LambdaMetafactory綁定反射
  • 使用JavaLangAccess的相關方法
  • 使用Unsafe直接構造

這三種方法,1和2性能差不多,3比1和2略慢,但都比直接new字符串要快得多。JDK8使用JMH測試的數據如下:

Benchmark                          Mode  Cnt       Score       Error   Units
StringCreateBenchmark.invoke      thrpt    5  784869.350 ±  1936.754  ops/ms
StringCreateBenchmark.langAccess  thrpt    5  784029.186 ±  2734.300  ops/ms
StringCreateBenchmark.unsafe      thrpt    5  761176.319 ± 11914.549  ops/ms
StringCreateBenchmark.newString   thrpt    5  140883.533 ±  2217.773  ops/ms

在JDK 9之後,對全部是ASCII字符的場景,直接構造能達到更好的效果。

4.1 基於MethodHandles.Lookup & LambdaMetafactory綁定反射的快速構造字符串的方法

4.1.1 JDK8快速構造字符串

public static BiFunction<char[], Boolean, String> getStringCreatorJDK8() throws Throwable {
   Constructor<MethodHandles.Lookup> constructor = MethodHandles.Lookup.class.getDeclaredConstructor(Class.class, int.class);
   constructor.setAccessible(true);
    MethodHandles lookup = constructor.newInstance(
          String.class
             , -1 // Lookup.TRUSTED
             );
    
    MethodHandles.Lookup caller = lookup.in(String.class);
  
    MethodHandle handle = caller.findConstructor(
                String.class, MethodType.methodType(void.class, char[].class, boolean.class)
                );

    CallSite callSite = LambdaMetafactory.metafactory(
            caller
            , "apply"
            , MethodType.methodType(BiFunction.class)
            , handle.type().generic()
            , handle
            , handle.type()
            );

    return (BiFunction) callSite.getTarget().invokeExact();
}

4.1.2 JDK 11快速構造字符串的方法

public static ToIntFunction<String> getStringCode11() throws Throwable {
    Constructor<MethodHandles.Lookup> constructor = MethodHandles.Lookup.class.getDeclaredConstructor(Class.class, int.class);
    constructor.setAccessible(true);
    MethodHandles.Lookup lookup = constructor.newInstance(
            String.class
            , -1 // Lookup.TRUSTED
    );

    MethodHandles.Lookup caller = lookup.in(String.class);
    MethodHandle handle = caller.findVirtual(
            String.class, "coder", MethodType.methodType(byte.class)
   );

    CallSite callSite = LambdaMetafactory.metafactory(
            caller
            , "applyAsInt"
            , MethodType.methodType(ToIntFunction.class)
            , MethodType.methodType(int.class, Object.class)
            , handle
            , handle.type()
    );

    return (ToIntFunction<String>) callSite.getTarget().invokeExact();
}
if (JDKUtils.JVM_VERSION == 11) {
    Function<byte[], String> stringCreator = JDKUtils.getStringCreatorJDK11();

    byte[] bytes = new byte[]{'a', 'b', 'c'};
    String apply = stringCreator.apply(bytes);
    assertEquals("abc", apply);
}

4.1.3 JDK 17快速構造字符串的方法

在JDK 17中,MethodHandles.Lookup使用Reflection.registerFieldsToFilter對lookupClass和allowedModes做瞭保護,網上搜索到的通過修改allowedModes的辦法是不可用的。

在JDK 17中,要通過配置JVM啟動參數才能使用MethodHandlers。如下:

--add-opens java.base/java.lang.invoke=ALL-UNNAMED
public static BiFunction<byte[], Charset, String> getStringCreatorJDK17() throws Throwable {
    Constructor<MethodHandles.Lookup> constructor = MethodHandles.Lookup.class.getDeclaredConstructor(Class.class, Class.class, int.class);
    constructor.setAccessible(true);
    MethodHandles.Lookup lookup = constructor.newInstance(
           String.class
            , null
            , -1 // Lookup.TRUSTED
    );

    MethodHandles.Lookup caller = lookup.in(String.class);
    MethodHandle handle = caller.findStatic(
            String.class, "newStringNoRepl1", MethodType.methodType(String.class, byte[].class, Charset.class)
    );

    CallSite callSite = LambdaMetafactory.metafactory(
            caller
            , "apply"
            , MethodType.methodType(BiFunction.class)
            , handle.type().generic()
            , handle
            , handle.type()
    );
    return (BiFunction<byte[], Charset, String>) callSite.getTarget().invokeExact();
}
if (JDKUtils.JVM_VERSION == 17) {
    BiFunction<byte[], Charset, String> stringCreator = JDKUtils.getStringCreatorJDK17();

    byte[] bytes = new byte[]{'a', 'b', 'c'};
    String apply = stringCreator.apply(bytes, StandardCharsets.US_ASCII);
    assertEquals("abc", apply);
}

4.2 基於JavaLangAccess快速構造

通過SharedSecrets提供的JavaLangAccess,也可以不拷貝構造字符串,但是這個比較麻煩,JDK 8/11/17的API都不一樣,對一套代碼兼容不同的JDK版本不方便,不建議使用。

JavaLangAccess javaLangAccess = SharedSecrets.getJavaLangAccess();
javaLangAccess.newStringNoRepl(b, StandardCharsets.US_ASCII);

4.3 基於Unsafe實現快速構造字符串

public static final Unsafe UNSAFE;
static {
    Unsafe unsafe = null;
    try {
        Field theUnsafeField = Unsafe.class.getDeclaredField("theUnsafe");
        theUnsafeField.setAccessible(true);
        unsafe = (Unsafe) theUnsafeField.get(null);
    } catch (Throwable ignored) {}
    UNSAFE = unsafe;
}

////////////////////////////////////////////

Object str = UNSAFE.allocateInstance(String.class);
UNSAFE.putObject(str, valueOffset, chars);

註意:在JDK 9之後,實現是不同,比如:

Object str = UNSAFE.allocateInstance(String.class);
UNSAFE.putByte(str, coderOffset, (byte) 0);
UNSAFE.putObject(str, valueOffset, (byte[]) bytes);

4.4 快速構建字符串的技巧應用:

如下的方法格式化日期為字符串,性能就會非常好。

public String formatYYYYMMDD(Calendar calendar) throws Throwable {
    int year = calendar.get(Calendar.YEAR);
    int month = calendar.get(Calendar.MONTH) + 1;
    int dayOfMonth = calendar.get(Calendar.DAY_OF_MONTH);

    
    byte y0 = (byte) (year / 1000 + '0');
    byte y1 = (byte) ((year / 100) % 10 + '0');
    byte y2 = (byte) ((year / 10) % 10 + '0');
    byte y3 = (byte) (year % 10 + '0');
    byte m0 = (byte) (month / 10 + '0');
    byte m1 = (byte) (month % 10 + '0');
    byte d0 = (byte) (dayOfMonth / 10 + '0');
    byte d1 = (byte) (dayOfMonth % 10 + '0');

    if (JDKUtils.JVM_VERSION >= 9) {
        byte[] bytes = new byte[] {y0, y1, y2, y3, m0, m1, d0, d1};

        if (JDKUtils.JVM_VERSION == 17) {
            return JDKUtils.getStringCreatorJDK17().apply(bytes, StandardCharsets.US_ASCII);
        }

        if (JDKUtils.JVM_VERSION <= 11) {
            return JDKUtils.getStringCreatorJDK11().apply(bytes);
        }

        return new String(bytes, StandardCharsets.US_ASCII);
    }

    char[] chars = new char[]{
            (char) y0, 
            (char) y1, 
            (char) y2, 
            (char) y3, 
            (char) m0,
            (char) m1, 
            (char) d0, 
            (char) d1
    };

    if (JDKUtils.JVM_VERSION == 8) {
        return JDKUtils.getStringCreatorJDK8().apply(chars, true);
    }

    return new String(chars);
}

5.快速遍歷字符串的辦法

無論JDK什麼版本,String.charAt都是一個較大的開銷,JIT的優化效果並不好,無法消除參數index范圍檢測的開銷,不如直接操作String裡面的value數組。

public final class String {
    private final char value[];
    
    public char charAt(int index) {
        if ((index < 0) || (index >= value.length)) {
            throw new StringIndexOutOfBoundsException(index);
        }
        return value[index];
    }
}

在JDK 9之後的版本,charAt開銷更大

public final class String {
    private final byte[] value;
    private final byte coder;
    
    public char charAt(int index) {
        if (isLatin1()) {
            return StringLatin1.charAt(value, index);
        } else {
            return StringUTF16.charAt(value, index);
        }
    }
}

5.1 獲取String.value的方法

獲取String.value的方法有如下:

  • 使用Field反射
  • 使用Unsafe

Unsafe和Field反射在JDK 8 JMH的比較數據如下:

Benchmark                         Mode  Cnt        Score       Error   Units
StringGetValueBenchmark.reflect  thrpt    5   438374.685 ±  1032.028  ops/ms
StringGetValueBenchmark.unsafe   thrpt    5  1302654.150 ± 59169.706  ops/ms

5.1.1 使用反射獲取String.value

static Field valueField;
static {
    try {
        valueField = String.class.getDeclaredField("value");
        valueField.setAccessible(true);
    } catch (NoSuchFieldException ignored) {}
}

////////////////////////////////////////////

char[] chars = (char[]) valueField.get(str);

5.1.2 使用Unsafe獲取String.value

static long valueFieldOffset;
static {
    try {
        Field valueField = String.class.getDeclaredField("value");
        valueFieldOffset = UNSAFE.objectFieldOffset(valueField);
    } catch (NoSuchFieldException ignored) {}
}

////////////////////////////////////////////

char[] chars = (char[]) UNSAFE.getObject(str, valueFieldOffset);
static long valueFieldOffset;
static long coderFieldOffset;
static {
    try {
        Field valueField = String.class.getDeclaredField("value");
        valueFieldOffset = UNSAFE.objectFieldOffset(valueField);
        
        Field coderField = String.class.getDeclaredField("coder");
        coderFieldOffset = UNSAFE.objectFieldOffset(coderField);
        
    } catch (NoSuchFieldException ignored) {}
}

////////////////////////////////////////////

byte coder = UNSAFE.getObject(str, coderFieldOffset);
byte[] bytes = (byte[]) UNSAFE.getObject(str, valueFieldOffset);

6.更快的encodeUTF8方法

當能直接獲取到String.value時,就可以直接對其做encodeUTF8操作,會比String.getBytes(StandardCharsets.UTF_8)性能好很多。

6.1 JDK8高性能encodeUTF8的方法

public static int encodeUTF8(char[] src, int offset, int len, byte[] dst, int dp) {
    int sl = offset + len;
    int dlASCII = dp + Math.min(len, dst.length);

    // ASCII only optimized loop
    while (dp < dlASCII && src[offset] < '\u0080') {
        dst[dp++] = (byte) src[offset++];
    }

    while (offset < sl) {
        char c = src[offset++];
        if (c < 0x80) {
            // Have at most seven bits
            dst[dp++] = (byte) c;
        } else if (c < 0x800) {
            // 2 bytes, 11 bits
            dst[dp++] = (byte) (0xc0 | (c >> 6));
            dst[dp++] = (byte) (0x80 | (c & 0x3f));
        } else if (c >= '\uD800' && c < ('\uDFFF' + 1)) { //Character.isSurrogate(c) but 1.7
            final int uc;
            int ip = offset - 1;
            if (c >= '\uD800' && c < ('\uDBFF' + 1)) { // Character.isHighSurrogate(c)
                if (sl - ip < 2) {
                    uc = -1;
                } else {
                    char d = src[ip + 1];
                    // d >= '\uDC00' && d < ('\uDFFF' + 1)
                    if (d >= '\uDC00' && d < ('\uDFFF' + 1)) { // Character.isLowSurrogate(d)
                        uc = ((c << 10) + d) + (0x010000 - ('\uD800' << 10) - '\uDC00'); // Character.toCodePoint(c, d)
                    } else {
                        dst[dp++] = (byte) '?';
                        continue;
                    }
                }
            } else {
                //
                if (c >= '\uDC00' && c < ('\uDFFF' + 1)) { // Character.isLowSurrogate(c)
                    dst[dp++] = (byte) '?';
                    continue;
                } else {
                    uc = c;
                }
            }

            if (uc < 0) {
                dst[dp++] = (byte) '?';
            } else {
                dst[dp++] = (byte) (0xf0 | ((uc >> 18)));
                dst[dp++] = (byte) (0x80 | ((uc >> 12) & 0x3f));
                dst[dp++] = (byte) (0x80 | ((uc >> 6) & 0x3f));
                dst[dp++] = (byte) (0x80 | (uc & 0x3f));
                offset++; // 2 chars
            }
        } else {
            // 3 bytes, 16 bits
            dst[dp++] = (byte) (0xe0 | ((c >> 12)));
            dst[dp++] = (byte) (0x80 | ((c >> 6) & 0x3f));
            dst[dp++] = (byte) (0x80 | (c & 0x3f));
        }
    }
    return dp;
}

使用encodeUTF8方法舉例

char[] chars = UNSAFE.getObject(str, valueFieldOffset);
// ensureCapacity(chars.length * 3)
byte[] bytes = ...; // 
int bytesLength = IOUtils.encodeUTF8(chars, 0, chars.length, bytes, bytesOffset);

這樣encodeUTF8操作,不會有多餘的arrayCopy操作,性能會得到提升。

6.1.1 性能測試比較

測試代碼

public class EncodeUTF8Benchmark {
    static String STR = "01234567890ABCDEFGHIJKLMNOPQRSTUVWZYZabcdefghijklmnopqrstuvwzyz一二三四五六七八九十";
    static byte[] out;

    static long valueFieldOffset;

    static {
        out = new byte[STR.length() * 3];
        try {
            Field valueField = String.class.getDeclaredField("value");
            valueFieldOffset = UnsafeUtils.UNSAFE.objectFieldOffset(valueField);
        } catch (NoSuchFieldException e) {
            e.printStackTrace();
        }
    }

    @Benchmark
    public void unsafeEncodeUTF8() throws Exception {
        char[] chars = (char[]) UnsafeUtils.UNSAFE.getObject(STR, valueFieldOffset);
        int len = IOUtils.encodeUTF8(chars, 0, chars.length, out, 0);
    }

    @Benchmark
    public void getBytesUTF8() throws Exception {
        byte[] bytes = STR.getBytes(StandardCharsets.UTF_8);
        System.arraycopy(bytes, 0, out, 0, bytes.length);
    }

    public static void main(String[] args) throws RunnerException {
        Options options = new OptionsBuilder()
                .include(EncodeUTF8Benchmark.class.getName())
                .mode(Mode.Throughput)
                .timeUnit(TimeUnit.MILLISECONDS)
                .forks(1)
                .build();
        new Runner(options).run();
    }
}

測試結果

EncodeUTF8Benchmark.getBytesUTF8      thrpt    5  20690.960 ± 5431.442  ops/ms
EncodeUTF8Benchmark.unsafeEncodeUTF8  thrpt    5  34508.606 ±   55.510  ops/ms

從結果來看,通過unsafe + 直接調用encodeUTF8方法, 編碼的所需要開銷是newStringUTF8的58%。

6.2 JDK9/11/17高性能encodeUTF8的方法

public static int encodeUTF8(byte[] src, int offset, int len, byte[] dst, int dp) {
    int sl = offset + len;
    while (offset < sl) {
        byte b0 = src[offset++];
        byte b1 = src[offset++];

        if (b1 == 0 && b0 >= 0) {
            dst[dp++] = b0;
        } else {
            char c = (char)(((b0 & 0xff) << 0) | ((b1 & 0xff) << 8));
            if (c < 0x800) {
                // 2 bytes, 11 bits
                dst[dp++] = (byte) (0xc0 | (c >> 6));
                dst[dp++] = (byte) (0x80 | (c & 0x3f));
            } else if (c >= '\uD800' && c < ('\uDFFF' + 1)) { //Character.isSurrogate(c) but 1.7
                final int uc;
                int ip = offset - 1;
                if (c >= '\uD800' && c < ('\uDBFF' + 1)) { // Character.isHighSurrogate(c)
                    if (sl - ip < 2) {
                        uc = -1;
                    } else {
                        b0 = src[ip + 1];
                        b1 = src[ip + 2];
                        char d = (char) (((b0 & 0xff) << 0) | ((b1 & 0xff) << 8));
                        // d >= '\uDC00' && d < ('\uDFFF' + 1)
                        if (d >= '\uDC00' && d < ('\uDFFF' + 1)) { // Character.isLowSurrogate(d)
                            uc = ((c << 10) + d) + (0x010000 - ('\uD800' << 10) - '\uDC00'); // Character.toCodePoint(c, d)
                        } else {
                            return -1;
                        }
                    }
                } else {
                    //
                    if (c >= '\uDC00' && c < ('\uDFFF' + 1)) { // Character.isLowSurrogate(c)
                        return -1;
                    } else {
                        uc = c;
                    }
                }

                if (uc < 0) {
                    dst[dp++] = (byte) '?';
                } else {
                    dst[dp++] = (byte) (0xf0 | ((uc >> 18)));
                    dst[dp++] = (byte) (0x80 | ((uc >> 12) & 0x3f));
                    dst[dp++] = (byte) (0x80 | ((uc >> 6) & 0x3f));
                    dst[dp++] = (byte) (0x80 | (uc & 0x3f));
                    offset++; // 2 chars
                }
            } else {
                // 3 bytes, 16 bits
                dst[dp++] = (byte) (0xe0 | ((c >> 12)));
                dst[dp++] = (byte) (0x80 | ((c >> 6) & 0x3f));
                dst[dp++] = (byte) (0x80 | (c & 0x3f));
            }
        }
    }
    return dp;
}

使用encodeUTF8方法舉例

byte coder = UNSAFE.getObject(str, coderFieldOffset);
byte[] value = UNSAFE.getObject(str, coderFieldOffset);

if (coder == 0) {
    // ascii arraycopy
} else {
    // ensureCapacity(chars.length * 3)
    byte[] bytes = ...; // 
    int bytesLength = IOUtils.encodeUTF8(value, 0, value.length, bytes, bytesOffset);
}

這樣encodeUTF8操作,不會有多餘的arrayCopy操作,性能會得到提升。

7.重要提醒

上面這些技巧都不是給新手使用的,使用不當會容易導致BUG,如果沒徹底搞懂,請不要使用!

以上就是Java字符串編碼解碼性能提升的技巧分享的詳細內容,更多關於Java字符串編碼解碼的資料請關註WalkonNet其它相關文章!

推薦閱讀: