MQ的分類組成優缺點測試點入門教程
一、什麼是 MQ
MQ全稱是 Message Queue,本質上是個隊列,原則還是先進先出,隻不過隊列裡存放的元素是一條條 Message 。
工作中常見被用於上下遊傳遞消息,實現一種跨進程的通信。這樣一來,要發送消息的上遊服務隻依賴 MQ 即可,與下遊服務解耦,我覺得可以理解成中介。
二、MQ 的作用
1. 流量削峰
舉個栗子,這裡有一個訂單系統處理用戶下單的業務邏輯。這個系統的服務能力假設為 1S 處理1萬次訂單,那麼正常來說,不超過1萬次對它來說都沒問題。但是,如果到瞭用戶下單的高峰期,這時候的單量可能就要超過系統服務能力。
這時候可以加入 MQ,把1s內下的訂單進行排隊,分散在一段時間內處理,雖然說會導致有些用戶會在幾秒之後才能收到下單成功,但是比起不能下單還是要好很多瞭。
2. 應用解耦
現在有個電商應用,裡面包含瞭好多個子系統:訂單系統、庫存系統、物流系統、支付系統等。
先看下耦合在一起的情況,當用戶創建訂單後,如果後面任何一個子系統出現瞭故障,都會造成用戶的下單操作異常。
現在加上 MQ 後,訂單系統的工作完成後,接下來的事情就轉交給MQ瞭。MQ 會分配消息給其他的3個系統,直到3個系統執行完成。如果存在其中有不能完成的系統,隊列會監督它繼續完成。比如物流系統壞瞭,但是訂單系統不受影響,用戶感覺不出來有異常,依舊可以看到成功下單的提示。當物流系統恢復正常以後,繼續處理訂單信息即可,從而提升瞭整個系統的可用性。
3. 異步處理
在生產中,有些服務間的調用是異步的。A 調用 B,但是 B 需要花費一段時間來處理。沒有 MQ 的時候通常這樣處理:
- A 輪詢的調用 B的查詢,看看結果是不是處理好瞭。
- A 提供一個callback 回調接口,B 執行好瞭調用這個api接口通知 A。
加入 MQ 後,這時 A 再調用 B 後,隻需要監聽 B 處理完成的消息即可。當 B 處理完成後,會發送一條消息給 MQ,然後 MQ 會把消息轉發給 A。所以,現在 A 既不用輪詢 B,也不用提供回調api
三、MQ 的缺點
MQ 這麼好用,難道就沒有缺點嗎? 有。
- 首先,在系統裡加入瞭一個中間件服務,無疑是會增加瞭系統復雜度。
- 如果 MQ 宕機瞭,不能用瞭,那麼後面的流程也沒法處理瞭。
- 存在一致性問題。比如訂單系統創建好瞭訂單,發給下遊的消息沒發出去,那麼就產生瞭臟數據。再比如,先發送瞭訂單的消息,再去創建訂單,如果創建失敗瞭,消息卻發送成功瞭,此時下遊以為已經創建好瞭訂單。
- 其他問題,比如消息丟失,重復發送相同消息,消息被其他系統消費,消息大量積壓等等,都需要我們有對應方案解決。
對於一致性問題,在 testerhome 有看到過一位大佬分享的經驗:
首先,消費者在消費成功後通過同步請求或者另一條 mq 隊列,反饋給生產者,生產者更新自己內部這條消息的狀態為已處理。
同時生產者內置一個定時任務,查看內部所有待處理消息是否超時,如果超時,進行自動補償。補償大概步驟是:
- 發起 http 同步查詢給消費者,確認消費者是否有消費
- 若消費者反饋已消費,直接更新生產者自身內部消息狀態
- 若消費者反饋未收到,則進行預警,人工介入處理(一般不會直接重發,因為重發有可能引發更嚴重的問題,如加劇 mq 消息堆積的情況)
四、常見 MQ 分類
1. ActiveMQ
Apache下的一個子項目。使用Java完全支持JMS1.1和J2EE 1.4規范的 JMS Provider實現,少量代碼就可以高效地實現高級應用場景。
優點:
- 單機吞吐量: 萬級。
- 時效性: ms級。
- 可用性:高。
- 消息可靠性:較低概率出現丟失數據。
缺點
官方社區現在對於 ActiveMQ 5.x的版本維護越來越少,高吞吐量場景較少使用。
2. Kafka
Apache下的一個子項目,使用scala實現的一個高性能分佈式Publish/Subscribe消息隊列系統。尤其在大數據上是個殺手鐧,吞吐量在百萬級,在數據采集、傳輸、存儲的過程中發揮舉足輕重的作用。
優點
- 單機吞吐量: 百萬級。
- 時效性: ms級。
- 可用性:非常高。
- 消息可靠性:可配置 0 丟失。
- 分佈式:一個數據有多個副本,少數機器宕機也不會丟失數據。
缺點
- 單機超過64個隊列/分區,CPU會明顯變高,隊列越多越高,發送消息響應時間變長。
- 消費失敗不支持重試。
Kafka主要特點是基於PULL的模式來處理消息消費,追求高吞吐量,一開始的目的就是用於日志收集和傳輸,適合產生大量數據的互聯網服務的數據收集業務。
3. RocketMQ
阿裡系下開源的一款分佈式、隊列模型的消息中間件,是阿裡參照kafka設計思想使用java實現的一套MQ,並做瞭自己的改進。被阿裡廣泛的應用在訂單、交易、充值、流計算、消息推送、日志流處理等場景。
優點
- 單機吞吐量: 十萬級。
- 時效性: ms級。
- 可用性:非常高。
- 消息可靠性:可配置 0 丟失。
- 分佈式:支持。
- 擴展性好,支持10億級別的消息堆積。
- 源碼是java,有利於定制。
缺點
支持的語言不多,主要是java,C++還不成熟。社區活躍也一般,沒有在 MQ 核心中實現 JMS 等接口,有些系統需要遷移則要修改大量代碼。
RocketMQ 天生為瞭金融互聯網而生,對於可靠性要求很高的場景,比如電商裡的扣款,它更值得信賴。
4. RabbitMQ
使用Erlang編寫的一個開源的消息隊列,本身支持很多的協議:AMQP,XMPP, SMTP,STOMP,也正是如此,使的它變的非常重量級,更適合於企業級的開發。
優點
- 單機吞吐量: 萬級。
- 時效性:μs級。
- 可用性:高。
- 消息可靠性:基本不丟失。
- 支持多語言。
- 社區活躍度高,更新頻率高
缺點
商業版需要付費,學習成本較高。
RabbitMQ 性能好,時效性強,管理界面也很友好。如果數據量沒那麼大,中心型業務可以優先選擇功能完備的 RabbitMQ。
五、MQ 的組成
1. 角色
- Broker:消息服務器,提供消息核心服務
- Producer:消息生產者,業務的發起方,負責生產消息傳輸給broker。
- Consumer:消息消費者,業務的處理方,負責從broker獲取消息並進行業務邏輯處理。
- Topic:主題,發佈訂閱模式下的消息統一匯集地,不同生產者向topic發送消息,由MQ服務器分發到不同的訂閱者,實現消息的廣播。
- Queue:隊列,點對點模式下,特定生產者向特定queue發送消息,消費者訂閱特定的queue完成指定消息的接收。
- Message:消息體,根據不同通信協議定義的固定格式進行編碼的數據包,來封裝業務數據,實現消息的傳輸。
2. MQ 消息模式
1)點對點模式
使用 queue 作為通信載體,消息生產者生產消息發送到 queue 中,然後消息消費者從 queue 中取出並且消費消息。
- 消息被消費以後,queue中不再存儲,所以消息消費者不可能消費到已經被消費的消息。
- Queue支持存在多個消費者,但是對一個消息而言,隻會有一個消費者可以消費。
2)發佈訂閱模式
使用topic作為通信載體,1個生產者可以對應多個消費者。消息生產者(發佈)將消息發佈到topic中,同時有多個消息消費者(訂閱)消費該消息。和點對點方式不同,發佈到topic的消息會被所有訂閱者消費。
就像你發瞭個朋友圈,你的朋友們都可以看到。
六、MQ 測試需要的關註點
1. 對於生產者
- 生成的數據格式是否跟定義的一致
- 數據是否有成功推送到隊列裡
- 數據是否有成功推動到對應的 topic
- 推送失敗時如何處理
- 重復推送同一條數據,如何處理
- 不同順序推送消息,註意隊列優先級
- 推消息耗時,隊列容量達到上限,無法推送後如何處理
2. 對於消費者
- 消費的消息是否來自訂閱的 topic
- 消息被消費瞭,是否有清除
- 生產者推送過快,消費速度過慢(堵塞),會如何
- 無法消費沒訂閱的 topic 消息
- 生產者推送消息後,消費者接受到的消息內容跟生產者推的一致
- 如何處理重復消息,比如冪等
- 處理超時
- 消息處理失敗
- 消費消息的優先級是否跟推的一致
- 消費消息耗時
- 消費者宕機,消息堆積,無人處理,會如何處理
- 是否能正常消費消息
3. 對於隊列
- 宕機恢復後,消息是否丟失
- 宕機預案,多久能恢復,如果無法恢復的預案
- 不同的消息格式,是否能正常識別及轉發
具體關註點,其實還要看具體業務來,這些都可以做些瞭解,如果有涉及到與MQ交互的,可以從多方面去考慮,增加測試覆蓋。
最後本文參考文章
https://www.jb51.net/article/249620.htm
https://www.jb51.net/article/219482.htm
以上就是MQ的分類組成優缺點測試點入門教程的詳細內容,更多關於MQ分類組成測試點的資料請關註WalkonNet其它相關文章!