win10+RTX3050ti+TensorFlow+cudn+cudnn配置深度學習環境的方法
避坑1:RTX30系列顯卡不支持cuda11.0以下版本,具體上限版本可自行查閱:
方法一,在cmd中輸入nvidia-smi查看
方法二:
由此可以看出本電腦最高適配cuda11.2.1版本;
註意需要版本適配,這裡我們選擇TensorFlow-gpu = 2.5,cuda=11.2.1,cudnn=8.1,python3.7
接下來可以下載cudn和cundnn:
官網:https://developer.nvidia.com/cuda-toolkit-archive
下載對應版本exe文件打開默認安裝就可;
驗證是否安裝成功:
官網:cuDNN Archive | NVIDIA Developer
把下載文件進行解壓把bin+lib+include文件復制到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.2文件下;
進入環境變量設置(cuda會自動設置,如果沒有的補全):
查看是否安裝成功:
cd C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.2\extras\demo_suite bandwidthTest.exe
安裝tensorflow-gpu:
pip install tensorflow-gpu==2.5
最後我們找相關程序來驗證一下:
第一步:
import tensorflow as tf print(tf.__version__) print('GPU', tf.test.is_gpu_available())
第二步:
# _*_ coding=utf-8 _*_ ''' @author: crazy jums @time: 2021-01-24 20:55 @desc: 添加描述 ''' # 指定GPU訓練 import os os.environ["CUDA_VISIBLE_DEVICES"]="0" ##表示使用GPU編號為0的GPU進行計算 import numpy as np from tensorflow.keras.models import Sequential # 采用貫序模型 from tensorflow.keras.layers import Dense, Dropout, Conv2D, MaxPool2D, Flatten from tensorflow.keras.datasets import mnist from tensorflow.keras.utils import to_categorical from tensorflow.keras.callbacks import TensorBoard import time def create_model(): model = Sequential() model.add(Conv2D(32, (5, 5), activation='relu', input_shape=[28, 28, 1])) # 第一卷積層 model.add(Conv2D(64, (5, 5), activation='relu')) # 第二卷積層 model.add(MaxPool2D(pool_size=(2, 2))) # 池化層 model.add(Flatten()) # 平鋪層 model.add(Dropout(0.5)) model.add(Dense(128, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(10, activation='softmax')) return model def compile_model(model): model.compile(loss='categorical_crossentropy', optimizer="adam", metrics=['acc']) return model def train_model(model, x_train, y_train, batch_size=32, epochs=10): tbCallBack = TensorBoard(log_dir="model", histogram_freq=1, write_grads=True) history = model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, shuffle=True, verbose=2, validation_split=0.2, callbacks=[tbCallBack]) return history, model if __name__ == "__main__": import tensorflow as tf print(tf.__version__) from tensorflow.python.client import device_lib print(device_lib.list_local_devices()) (x_train, y_train), (x_test, y_test) = mnist.load_data() # mnist的數據我自己已經下載好瞭的 print(np.shape(x_train), np.shape(y_train), np.shape(x_test), np.shape(y_test)) x_train = np.expand_dims(x_train, axis=3) x_test = np.expand_dims(x_test, axis=3) y_train = to_categorical(y_train, num_classes=10) y_test = to_categorical(y_test, num_classes=10) print(np.shape(x_train), np.shape(y_train), np.shape(x_test), np.shape(y_test)) model = create_model() model = compile_model(model) print("start training") ts = time.time() history, model = train_model(model, x_train, y_train, epochs=2) print("start training", time.time() - ts)
驗證成功。
以上就是win10+RTX3050ti+TensorFlow+cudn+cudnn配置深度學習環境的詳細內容,更多關於win10+RTX3050ti+TensorFlow+cudn+cudnn深度學習的資料請關註WalkonNet其它相關文章!
推薦閱讀:
- 由淺入深學習TensorFlow MNIST 數據集
- python之tensorflow手把手實例講解斑馬線識別實現
- R語言基於Keras的MLP神經網絡及環境搭建
- Python實戰之MNIST手寫數字識別詳解
- Python神經網絡TensorFlow基於CNN卷積識別手寫數字