基於Pytorch實現分類器的示例詳解
本文實現兩個分類器: softmax分類器和感知機分類器
Softmax分類器
Softmax分類是一種常用的多類別分類算法,它可以將輸入數據映射到一個概率分佈上。Softmax分類首先將輸入數據通過線性變換得到一個向量,然後將向量中的每個元素進行指數函數運算,最後將指數運算結果歸一化得到一個概率分佈。這個概率分佈可以被解釋為每個類別的概率估計。
定義
定義一個softmax分類器類:
class SoftmaxClassifier(nn.Module): def __init__(self,input_size,output_size): # 調用父類的__init__()方法進行初始化 super(SoftmaxClassifier,self).__init__() # 定義一個nn.Linear對象,用於將輸入特征映射到輸出類別 self.linear = nn.Linear(input_size,output_size) def forward(self,x): x = self.linear(x) # 傳遞給線性層 return nn.functional.softmax(x,dim=1) # 得到概率分佈 def compute_accuracy(self,output,labels): preds = torch.argmax(output,dim=1) # 獲取每個樣本的預測標簽 correct = torch.sum(preds == labels).item() # 計算正確預測的數量 accuracy = correct / len(labels) # 除以總樣本數得到準確率 return accuracy
如上定義三個方法:
- __init__(self):構造函數,在類初始化時運行,調用父類的__init__()方法進行初始化
- forward(self):模型前向計算過程
- compute_accuracy(self):計算模型的預測準確率
訓練
生成訓練數據:
import numpy as np # 生成隨機樣本(包含訓練數據和測試數據) def generate_rand_samples(dot_num=100): x_p = np.random.normal(3., 1, dot_num) y_p = np.random.normal(3., 1, dot_num) y = np.zeros(dot_num) C1 = np.array([x_p, y_p, y]).T x_n = np.random.normal(7., 1, dot_num) y_n = np.random.normal(7., 1, dot_num) y = np.ones(dot_num) C2 = np.array([x_n, y_n, y]).T x_n = np.random.normal(3., 1, dot_num) y_n = np.random.normal(7., 1, dot_num) y = np.ones(dot_num)*2 C3 = np.array([x_n, y_n, y]).T x_n = np.random.normal(7, 1, dot_num) y_n = np.random.normal(3, 1, dot_num) y = np.ones(dot_num)*3 C4 = np.array([x_n, y_n, y]).T data_set = np.concatenate((C1, C2, C3, C4), axis=0) np.random.shuffle(data_set) return data_set[:,:2].astype(np.float32),data_set[:,2].astype(np.int32) X_train,y_train = generate_rand_samples() y_train[y_train == -1] = 0
設置訓練前的前置參數,並初始化分類器
num_inputs = 2 # 輸入維度大小 num_outputs = 4 # 輸出維度大小 learning_rate = 0.01 # 學習率 num_epochs = 2000 # 訓練周期數 # 歸一化數據 將數據特征減去均值再除以標準差 X_train = (X_train - X_train.mean(axis=0)) / X_train.std(axis=0) y_train = y_train.astype(np.compat.long) # 創建model並初始化 model = SoftmaxClassifier(num_inputs, num_outputs) criterion = nn.CrossEntropyLoss() # 交叉熵損失 optimizer = optim.SGD(model.parameters(), lr=learning_rate) # SGD優化器
訓練:
# 遍歷訓練周期數 for epoch in range(num_epochs): outputs = model(torch.tensor(X_train)) # 前向傳遞計算 loss = criterion(outputs,torch.tensor(y_train)) # 計算預測輸出和真實標簽之間的損失 train_accuracy = model.compute_accuracy(outputs,torch.tensor(y_train)) # 計算模型當前訓練周期中準確率 optimizer.zero_grad() # 清楚優化器中梯度 loss.backward() # 計算損失對模型參數的梯度 optimizer.step() # 打印信息 if (epoch + 1) % 10 == 0: print(f"Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}, Accuracy: {train_accuracy:.4f}")
運行:
Epoch [1820/2000], Loss: 0.9947, Accuracy: 0.9575
Epoch [1830/2000], Loss: 0.9940, Accuracy: 0.9600
Epoch [1840/2000], Loss: 0.9932, Accuracy: 0.9600
Epoch [1850/2000], Loss: 0.9925, Accuracy: 0.9600
Epoch [1860/2000], Loss: 0.9917, Accuracy: 0.9600
….
測試
生成測試並測試:
X_test, y_test = generate_rand_samples() # 生成測試數據 X_test = (X_test- np.mean(X_test)) / np.std(X_test) # 歸一化 y_test = y_test.astype(np.compat.long) predicts = model(torch.tensor(X_test)) # 獲取模型輸出 accuracy = model.compute_accuracy(predicts,torch.tensor(y_test)) # 計算準確度 print(f'Test Accuracy: {accuracy:.4f}')
輸出:
Test Accuracy: 0.9725
繪制圖像:
# 繪制圖像 x_min, x_max = X_test[:, 0].min() - 1, X_test[:, 0].max() + 1 y_min, y_max = X_test[:, 1].min() - 1, X_test[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.1), np.arange(y_min, y_max, 0.1)) Z = model(torch.tensor(np.c_[xx.ravel(), yy.ravel()], dtype=torch.float32)).argmax(dim=1).numpy() Z = Z.reshape(xx.shape) plt.contourf(xx, yy, Z, alpha=0.4) plt.scatter(X_test[:, 0], X_test[:, 1], c=y_test, s=20, edgecolor='k') plt.show()
感知機分類器
實現與上述softmax分類器相似,此處實現sigmod感知機,采用sigmod作為分類函數,該函數可以將線性變換的結果映射為0到1之間的實數值,通常被用作神經網絡中的激活函數
sigmoid感知機的學習算法與普通的感知機類似,也是采用隨機梯度下降(SGD)的方式進行更新。不同之處在於,sigmoid感知機的輸出是一個概率值,需要將其轉化為類別標簽。
通常使用閾值來決定輸出值所屬的類別,如將輸出值大於0.5的樣本歸為正類,小於等於0.5的樣本歸為負類。
定義
# 感知機分類器 class PerceptronClassifier(nn.Module): def __init__(self, input_size,output_size): super(PerceptronClassifier, self).__init__() self.linear = nn.Linear(input_size,output_size) def forward(self, x): logits = self.linear(x) return torch.sigmoid(logits) def compute_accuracy(self, pred, target): pred = torch.where(pred >= 0.5, 1, -1) accuracy = (pred == target).sum().item() / target.size(0) return accuracy
給定一個輸入向量(x1,x2,x3…xn),輸出為y=σ(w⋅x+b)=1/(e^−(w⋅x+b))
訓練
生成訓練集:
def generate_rand_samples(dot_num=100): x_p = np.random.normal(3., 1, dot_num) y_p = np.random.normal(3., 1, dot_num) y = np.ones(dot_num) C1 = np.array([x_p, y_p, y]).T x_n = np.random.normal(6., 1, dot_num) y_n = np.random.normal(0., 1, dot_num) y = np.ones(dot_num)*-1 C2 = np.array([x_n, y_n, y]).T data_set = np.concatenate((C1, C2), axis=0) np.random.shuffle(data_set) return data_set[:,:2].astype(np.float32),data_set[:,2].astype(np.int32) X_train,y_train = generate_rand_samples() X_test,y_test = generate_rand_samples()
該過程與上述softmax分類器相似:
num_inputs = 2 num_outputs = 1 learning_rate = 0.01 num_epochs = 200 # 歸一化數據 將數據特征減去均值再除以標準差 X_train = (X_train - X_train.mean(axis=0)) / X_train.std(axis=0) # 創建model並初始化 model = PerceptronClassifier(num_inputs, num_outputs) optimizer = optim.SGD(model.parameters(), lr=learning_rate) # SGD優化器 criterion = nn.functional.binary_cross_entropy
訓練:
# 遍歷訓練周期數 for epoch in range(num_epochs): outputs = model(torch.tensor(X_train)) labels = torch.tensor(y_train).unsqueeze(1) loss = criterion(outputs,labels.float()) train_accuracy = model.compute_accuracy(outputs, labels) optimizer.zero_grad() loss.backward() optimizer.step() if (epoch + 1) % 10 == 0: print(f"Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}, Accuracy: {train_accuracy:.4f}")
輸出:
Epoch [80/200], Loss: -0.5429, Accuracy: 0.9550
Epoch [90/200], Loss: -0.6235, Accuracy: 0.9550
Epoch [100/200], Loss: -0.7015, Accuracy: 0.9500
Epoch [110/200], Loss: -0.7773, Accuracy: 0.9400
….
測試
X_test, y_test = generate_rand_samples() # 生成測試集 X_test = (X_test - X_test.mean(axis=0)) / X_test.std(axis=0) test_inputs = torch.tensor(X_test) test_labels = torch.tensor(y_test).unsqueeze(1) with torch.no_grad(): outputs = model(test_inputs) accuracy = model.compute_accuracy(outputs, test_labels) print(f"Test Accuracy: {accuracy:.4f}")
繪圖:
x_min, x_max = X_test[:, 0].min() - 1, X_test[:, 0].max() + 1 y_min, y_max = X_test[:, 1].min() - 1, X_test[:, 1].max() + 1 xx, yy = torch.meshgrid(torch.linspace(x_min, x_max, 100), torch.linspace(y_min, y_max, 100)) # 預測每個點的類別 Z = torch.argmax(model(torch.cat((xx.reshape(-1,1), yy.reshape(-1,1)), 1)), 1) Z = Z.reshape(xx.shape) # 繪制分類圖 plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral,alpha=0.0) # 繪制分界線 w = model.linear.weight.detach().numpy() # 權重 b = model.linear.bias.detach().numpy() # 偏置 x1 = np.linspace(x_min, x_max, 100) x2 = (-b - w[0][0]*x1) / w[0][1] plt.plot(x1, x2, 'k-') # 繪制樣本點 plt.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=plt.cm.Spectral) plt.show()
以上就是基於Pytorch實現分類器的示例詳解的詳細內容,更多關於Pytorch分類器的資料請關註WalkonNet其它相關文章!
推薦閱讀:
- Pytorch相關知識介紹與應用
- pyTorch深度學習softmax實現解析
- 手把手教你實現PyTorch的MNIST數據集
- python中的Pytorch建模流程匯總
- pytorch 實現L2和L1正則化regularization的操作