Numpy中的數組搜索中np.where方法詳細介紹
numpy.where (condition[, x, y])
numpy.where() 有兩種用法:
1. np.where(condition, x, y)
滿足條件(condition),輸出x,不滿足輸出y。
如果是一維數組,相當於[xv if c else yv for (c,xv,yv) in zip(condition,x,y)]
>>> aa = np.arange(10) >>> np.where(aa,1,-1) array([-1, 1, 1, 1, 1, 1, 1, 1, 1, 1]) # 0為False,所以第一個輸出-1 >>> np.where(aa > 5,1,-1) array([-1, -1, -1, -1, -1, -1, 1, 1, 1, 1]) >>> np.where([[True,False], [True,True]], # 官網上的例子 [[1,2], [3,4]], [[9,8], [7,6]]) array([[1, 8], [3, 4]])
上面這個例子的條件為[[True,False], [True,False]],分別對應最後輸出結果的四個值。第一個值從[1,9]中選,因為條件為True,所以是選1。第二個值從[2,8]中選,因為條件為False,所以選8,後面以此類推。類似的問題可以再看個例子:
>>> a = 10 >>> np.where([[a > 5,a < 5], [a == 10,a == 7]], [["chosen","not chosen"], ["chosen","not chosen"]], [["not chosen","chosen"], ["not chosen","chosen"]]) array([['chosen', 'chosen'], ['chosen', 'chosen']], dtype='<U10')
2. np.where(condition)
隻有條件 (condition),沒有x和y,則輸出滿足條件 (即非0) 元素的坐標 (等價於numpy.nonzero)。這裡的坐標以tuple的形式給出,通常原數組有多少維,輸出的tuple中就包含幾個數組,分別對應符合條件元素的各維坐標。
>>> a = np.array([2,4,6,8,10]) >>> np.where(a > 5) # 返回索引 (array([2, 3, 4]),) >>> a[np.where(a > 5)] # 等價於 a[a>5] array([ 6, 8, 10]) >>> np.where([[0, 1], [1, 0]]) (array([0, 1]), array([1, 0]))
上面這個例子條件中[[0,1],[1,0]]的真值為兩個1,各自的第一維坐標為[0,1],第二維坐標為[1,0] 。
下面看個復雜點的例子:
>>> a = np.arange(27).reshape(3,3,3) >>> a array([[[ 0, 1, 2], [ 3, 4, 5], [ 6, 7, 8]], [[ 9, 10, 11], [12, 13, 14], [15, 16, 17]], [[18, 19, 20], [21, 22, 23], [24, 25, 26]]]) >>> np.where(a > 5) (array([0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2]), array([2, 2, 2, 0, 0, 0, 1, 1, 1, 2, 2, 2, 0, 0, 0, 1, 1, 1, 2, 2, 2]), array([0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2])) # 符合條件的元素為 [ 6, 7, 8]], [[ 9, 10, 11], [12, 13, 14], [15, 16, 17]], [[18, 19, 20], [21, 22, 23], [24, 25, 26]]]
所以np.where會輸出每個元素的對應的坐標,因為原數組有三維,所以tuple中有三個數組。
補充
np.where和np.searchsorted同屬於Numpy數組搜索的一部分,這裡先介紹簡單的where
import numpy as np a = np.array([1, 2, 3, 4, 5]) b = np.where(a == 5) print(b)
where方法將會返回一個元祖
(array([4]),)
此外還將介紹一個搜索奇數和偶數的方法(數組全都默認使用最上面的a數組)
可見,簡單的判斷餘數即可
c = np.where(a%2 == 0) print(c) d = np.where(a%2 == 1) print(d)
返回:
(array([1, 3]),) (array([0, 2, 4]),)
關於np.where方法到這裡就結束啦
到此這篇關於Numpy中的數組搜索中np.where方法詳細介紹的文章就介紹到這瞭,更多相關Numpy np.where 內容請搜索WalkonNet以前的文章或繼續瀏覽下面的相關文章希望大傢以後多多支持WalkonNet!
推薦閱讀:
- 淺談numpy.where() 的用法和np.argsort()的用法說明
- Numpy實現矩陣運算及線性代數應用
- Python NumPy教程之數組的創建詳解
- Python Numpy教程之排序,搜索和計數詳解
- 初識python的numpy模塊