C++實現LeetCode(105.由先序和中序遍歷建立二叉樹)

[LeetCode] 105. Construct Binary Tree from Preorder and Inorder Traversal 由先序和中序遍歷建立二叉樹

Given preorder and inorder traversal of a tree, construct the binary tree.

Note:
You may assume that duplicates do not exist in the tree.

For example, given

preorder = [3,9,20,15,7]
inorder = [9,3,15,20,7]

Return the following binary tree:

    3
/ \
9  20
/  \
15   7

這道題要求用先序和中序遍歷來建立二叉樹,跟之前那道 Construct Binary Tree from Inorder and Postorder Traversal 原理基本相同,針對這道題,由於先序的順序的第一個肯定是根,所以原二叉樹的根節點可以知道,題目中給瞭一個很關鍵的條件就是樹中沒有相同元素,有瞭這個條件就可以在中序遍歷中也定位出根節點的位置,並以根節點的位置將中序遍歷拆分為左右兩個部分,分別對其遞歸調用原函數,參見代碼如下:

class Solution {
public:
    TreeNode *buildTree(vector<int> &preorder, vector<int> &inorder) {
        return buildTree(preorder, 0, preorder.size() - 1, inorder, 0, inorder.size() - 1);
    }
    TreeNode *buildTree(vector<int> &preorder, int pLeft, int pRight, vector<int> &inorder, int iLeft, int iRight) {
        if (pLeft > pRight || iLeft > iRight) return NULL;
        int i = 0;
        for (i = iLeft; i <= iRight; ++i) {
            if (preorder[pLeft] == inorder[i]) break;
        }
        TreeNode *cur = new TreeNode(preorder[pLeft]);
        cur->left = buildTree(preorder, pLeft + 1, pLeft + i - iLeft, inorder, iLeft, i - 1);
        cur->right = buildTree(preorder, pLeft + i - iLeft + 1, pRight, inorder, i + 1, iRight);
        return cur;
    }
};

下面來看一個例子, 某一二叉樹的中序和後序遍歷分別為:

Preorder:    5  4  11  8  13  9

Inorder:    11  4  5  13  8  9

5  4  11  8  13  9      =>          5

11  4  5  13  8  9                /  \

4  11     8   13  9      =>         5

11  4     13  8  9                  /  \

                             4   8

11       13    9        =>         5

11       13    9                    /  \

                             4   8

                            /    /     \

                           11    13    9

做完這道題後,大多人可能會有個疑問,怎麼沒有由先序和後序遍歷建立二叉樹呢,這是因為先序和後序遍歷不能唯一的確定一個二叉樹,比如下面五棵樹:

1      preorder:    1  2  3
/ \       inorder:       2  1  3
2 3       postorder:   2  3  1

1       preorder:     1  2  3
/       inorder:       3  2  1
2          postorder:   3  2  1
/
3

1        preorder:    1  2  3
/        inorder:      2  3  1
2       postorder:  3  2  1
\
3

       1         preorder:    1  2  3
\        inorder:      1  3  2
2      postorder:  3  2  1
/
3

       1         preorder:    1  2  3
\      inorder:      1  2  3
2      postorder:  3  2  1
\
3

從上面我們可以看出,對於先序遍歷都為 1 2 3 的五棵二叉樹,它們的中序遍歷都不相同,而它們的後序遍歷卻有相同的,所以隻有和中序遍歷一起才能唯一的確定一棵二叉樹。但可能會有小夥伴指出,那第 889 題 Construct Binary Tree from Preorder and Postorder Traversal 不就是從先序和後序重建二叉樹麼?難道博主被啪啪打臉瞭麼?難道博主的一世英名就此毀於一旦瞭麼?不,博主向命運的不公說不,請仔細看那道題的要求 “Return any binary tree that matches the given preorder and postorder traversals.”,是讓返回任意一棵二叉樹即可,所以這跟博主的結論並不矛盾。長舒一口氣,博主的晚節保住瞭~

Github 同步地址:

https://github.com/grandyang/leetcode/issues/105

類似題目:

Construct Binary Tree from Inorder and Postorder Traversal

Construct Binary Tree from Preorder and Postorder Traversal

參考資料:

https://leetcode.com/problems/construct-binary-tree-from-preorder-and-inorder-traversal/

https://leetcode.com/problems/construct-binary-tree-from-preorder-and-inorder-traversal/discuss/34538/My-Accepted-Java-Solution

https://leetcode.com/problems/construct-binary-tree-from-preorder-and-inorder-traversal/discuss/34562/Sharing-my-straightforward-recursive-solution

到此這篇關於C++實現LeetCode(105.由先序和中序遍歷建立二叉樹)的文章就介紹到這瞭,更多相關C++實現由先序和中序遍歷建立二叉樹內容請搜索WalkonNet以前的文章或繼續瀏覽下面的相關文章希望大傢以後多多支持WalkonNet!

推薦閱讀: