一文教你用python編寫Dijkstra算法進行機器人路徑規劃
前言
為瞭機器人在尋路的過程中避障並且找到最短距離,我們需要使用一些算法進行路徑規劃(Path Planning),常用的算法有Djikstra算法、A*算法等等,在github上有一個非常好的項目叫做PythonRobotics,其中給出瞭源代碼,參考代碼,可以對Djikstra算法有更深的瞭解。
一、算法原理
如圖所示,Dijkstra算法要解決的是一個有向權重圖中最短路徑的尋找問題,圖中紅色節點1代表起始節點,藍色節點6代表目標結點。箭頭上的數字代表兩個結點中的的距離,也就是模型中所謂的代價(cost)。
貪心算法需要設立兩個集合,open_set(開集)和closed_set(閉集),然後根據以下程序進行操作:
- 把初始結點放入到open_set中;
- 把open_set中代價最小的節點取出來放入到closed_set中,並且作為當前節點;
- 把與當前節點相鄰的節點放入到open_set中,如果代價更小更新代價
- 重復2-3過程,直到找到終點。
註意open_set中的代價是可變的,而closed_set中的代價已經是最小的代價瞭,這也是為什麼叫做open和close的原因。
至於為什麼closed_set中的代價是最小的,是因為我們使用瞭貪心算法,既然已經把節點加入到瞭close中,那麼初始點到close節點中的距離就比到open中的距離小瞭,無論如何也不可能找到比它更小的瞭。
二、程序代碼
""" Grid based Dijkstra planning author: Atsushi Sakai(@Atsushi_twi) """ import matplotlib.pyplot as plt import math show_animation = True class Dijkstra: def __init__(self, ox, oy, resolution, robot_radius): """ Initialize map for a star planning ox: x position list of Obstacles [m] oy: y position list of Obstacles [m] resolution: grid resolution [m] rr: robot radius[m] """ self.min_x = None self.min_y = None self.max_x = None self.max_y = None self.x_width = None self.y_width = None self.obstacle_map = None self.resolution = resolution self.robot_radius = robot_radius self.calc_obstacle_map(ox, oy) self.motion = self.get_motion_model() class Node: def __init__(self, x, y, cost, parent_index): self.x = x # index of grid self.y = y # index of grid self.cost = cost self.parent_index = parent_index # index of previous Node def __str__(self): return str(self.x) + "," + str(self.y) + "," + str( self.cost) + "," + str(self.parent_index) def planning(self, sx, sy, gx, gy): """ dijkstra path search input: s_x: start x position [m] s_y: start y position [m] gx: goal x position [m] gx: goal x position [m] output: rx: x position list of the final path ry: y position list of the final path """ start_node = self.Node(self.calc_xy_index(sx, self.min_x), self.calc_xy_index(sy, self.min_y), 0.0, -1) goal_node = self.Node(self.calc_xy_index(gx, self.min_x), self.calc_xy_index(gy, self.min_y), 0.0, -1) open_set, closed_set = dict(), dict() open_set[self.calc_index(start_node)] = start_node while 1: c_id = min(open_set, key=lambda o: open_set[o].cost) current = open_set[c_id] # show graph if show_animation: # pragma: no cover plt.plot(self.calc_position(current.x, self.min_x), self.calc_position(current.y, self.min_y), "xc") # for stopping simulation with the esc key. plt.gcf().canvas.mpl_connect( 'key_release_event', lambda event: [exit(0) if event.key == 'escape' else None]) if len(closed_set.keys()) % 10 == 0: plt.pause(0.001) if current.x == goal_node.x and current.y == goal_node.y: print("Find goal") goal_node.parent_index = current.parent_index goal_node.cost = current.cost break # Remove the item from the open set del open_set[c_id] # Add it to the closed set closed_set[c_id] = current # expand search grid based on motion model for move_x, move_y, move_cost in self.motion: node = self.Node(current.x + move_x, current.y + move_y, current.cost + move_cost, c_id) n_id = self.calc_index(node) if n_id in closed_set: continue if not self.verify_node(node): continue if n_id not in open_set: open_set[n_id] = node # Discover a new node else: if open_set[n_id].cost >= node.cost: # This path is the best until now. record it! open_set[n_id] = node rx, ry = self.calc_final_path(goal_node, closed_set) return rx, ry def calc_final_path(self, goal_node, closed_set): # generate final course rx, ry = [self.calc_position(goal_node.x, self.min_x)], [ self.calc_position(goal_node.y, self.min_y)] parent_index = goal_node.parent_index while parent_index != -1: n = closed_set[parent_index] rx.append(self.calc_position(n.x, self.min_x)) ry.append(self.calc_position(n.y, self.min_y)) parent_index = n.parent_index return rx, ry def calc_position(self, index, minp): pos = index * self.resolution + minp return pos def calc_xy_index(self, position, minp): return round((position - minp) / self.resolution) def calc_index(self, node): return (node.y - self.min_y) * self.x_width + (node.x - self.min_x) def verify_node(self, node): px = self.calc_position(node.x, self.min_x) py = self.calc_position(node.y, self.min_y) if px < self.min_x: return False if py < self.min_y: return False if px >= self.max_x: return False if py >= self.max_y: return False if self.obstacle_map[node.x][node.y]: return False return True def calc_obstacle_map(self, ox, oy): self.min_x = round(min(ox)) self.min_y = round(min(oy)) self.max_x = round(max(ox)) self.max_y = round(max(oy)) print("min_x:", self.min_x) print("min_y:", self.min_y) print("max_x:", self.max_x) print("max_y:", self.max_y) self.x_width = round((self.max_x - self.min_x) / self.resolution) self.y_width = round((self.max_y - self.min_y) / self.resolution) print("x_width:", self.x_width) print("y_width:", self.y_width) # obstacle map generation self.obstacle_map = [[False for _ in range(self.y_width)] for _ in range(self.x_width)] for ix in range(self.x_width): x = self.calc_position(ix, self.min_x) for iy in range(self.y_width): y = self.calc_position(iy, self.min_y) for iox, ioy in zip(ox, oy): d = math.hypot(iox - x, ioy - y) if d <= self.robot_radius: self.obstacle_map[ix][iy] = True break @staticmethod def get_motion_model(): # dx, dy, cost motion = [[1, 0, 1], [0, 1, 1], [-1, 0, 1], [0, -1, 1], [-1, -1, math.sqrt(2)], [-1, 1, math.sqrt(2)], [1, -1, math.sqrt(2)], [1, 1, math.sqrt(2)]] return motion def main(): print(__file__ + " start!!") # start and goal position sx = -5.0 # [m] sy = -5.0 # [m] gx = 50.0 # [m] gy = 50.0 # [m] grid_size = 2.0 # [m] robot_radius = 1.0 # [m] # set obstacle positions ox, oy = [], [] for i in range(-10, 60): ox.append(i) oy.append(-10.0) for i in range(-10, 60): ox.append(60.0) oy.append(i) for i in range(-10, 61): ox.append(i) oy.append(60.0) for i in range(-10, 61): ox.append(-10.0) oy.append(i) for i in range(-10, 40): ox.append(20.0) oy.append(i) for i in range(0, 40): ox.append(40.0) oy.append(60.0 - i) if show_animation: # pragma: no cover plt.plot(ox, oy, ".k") plt.plot(sx, sy, "og") plt.plot(gx, gy, "xb") plt.grid(True) plt.axis("equal") dijkstra = Dijkstra(ox, oy, grid_size, robot_radius) rx, ry = dijkstra.planning(sx, sy, gx, gy) if show_animation: # pragma: no cover plt.plot(rx, ry, "-r") plt.pause(0.01) plt.show() if __name__ == '__main__': main()
三、運行結果
四、 A*算法:Djikstra算法的改進
Dijkstra算法實際上是貪心搜索算法,算法復雜度為O( n 2 n^2 n2),為瞭減少無效搜索的次數,我們可以增加一個啟發式函數(heuristic),比如搜索點到終點目標的距離,在選擇open_set元素的時候,我們將cost變成cost+heuristic,就可以給出搜索的方向性,這樣就可以減少南轅北轍的情況。我們可以run一下PythonRobotics中的Astar代碼,得到以下結果:
總結
到此這篇關於python編寫Dijkstra算法進行機器人路徑規劃的文章就介紹到這瞭,更多相關python寫Dijkstra算法內容請搜索WalkonNet以前的文章或繼續瀏覽下面的相關文章希望大傢以後多多支持WalkonNet!
推薦閱讀:
- python實現A*尋路算法
- C++實現Dijkstra算法的示例代碼
- Python實現最短路徑問題的方法
- Javascript結合Vue實現對任意迷宮圖片的自動尋路
- React前端解鏈表數據結構示例詳解