Python Pandas高級教程之時間處理

簡介

時間應該是在數據處理中經常會用到的一種數據類型,除瞭Numpy中datetime64 和 timedelta64 這兩種數據類型之外,pandas 還整合瞭其他python庫比如  scikits.timeseries  中的功能。

時間分類

pandas中有四種時間類型:

  1. Date times :  日期和時間,可以帶時區。和標準庫中的  datetime.datetime 類似。
  2. Time deltas: 絕對持續時間,和 標準庫中的  datetime.timedelta  類似。
  3. Time spans: 由時間點及其關聯的頻率定義的時間跨度。
  4. Date offsets:基於日歷計算的時間 和 dateutil.relativedelta.relativedelta 類似。

我們用一張表來表示:

類型 標量class 數組class pandas數據類型 主要創建方法
Date times Timestamp DatetimeIndex datetime64[ns] or datetime64[ns, tz] to_datetime or date_range
Time deltas Timedelta TimedeltaIndex timedelta64[ns] to_timedelta or timedelta_range
Time spans Period PeriodIndex period[freq] Period or period_range
Date offsets DateOffset None None DateOffset

看一個使用的例子:

In [19]: pd.Series(range(3), index=pd.date_range("2000", freq="D", periods=3))
Out[19]: 
2000-01-01    0
2000-01-02    1
2000-01-03    2
Freq: D, dtype: int64

看一下上面數據類型的空值:

In [24]: pd.Timestamp(pd.NaT)
Out[24]: NaT

In [25]: pd.Timedelta(pd.NaT)
Out[25]: NaT

In [26]: pd.Period(pd.NaT)
Out[26]: NaT

# Equality acts as np.nan would
In [27]: pd.NaT == pd.NaT
Out[27]: False

Timestamp

Timestamp  是最基礎的時間類型,我們可以這樣創建:

In [28]: pd.Timestamp(datetime.datetime(2012, 5, 1))
Out[28]: Timestamp('2012-05-01 00:00:00')

In [29]: pd.Timestamp("2012-05-01")
Out[29]: Timestamp('2012-05-01 00:00:00')

In [30]: pd.Timestamp(2012, 5, 1)
Out[30]: Timestamp('2012-05-01 00:00:00')

DatetimeIndex

Timestamp 作為index會自動被轉換為DatetimeIndex:

In [33]: dates = [
   ....:     pd.Timestamp("2012-05-01"),
   ....:     pd.Timestamp("2012-05-02"),
   ....:     pd.Timestamp("2012-05-03"),
   ....: ]
   ....: 

In [34]: ts = pd.Series(np.random.randn(3), dates)

In [35]: type(ts.index)
Out[35]: pandas.core.indexes.datetimes.DatetimeIndex

In [36]: ts.index
Out[36]: DatetimeIndex(['2012-05-01', '2012-05-02', '2012-05-03'], dtype='datetime64[ns]', freq=None)

In [37]: ts
Out[37]: 
2012-05-01    0.469112
2012-05-02   -0.282863
2012-05-03   -1.509059
dtype: float64

date_range 和 bdate_range

還可以使用 date_range 來創建DatetimeIndex:

In [74]: start = datetime.datetime(2011, 1, 1)

In [75]: end = datetime.datetime(2012, 1, 1)

In [76]: index = pd.date_range(start, end)

In [77]: index
Out[77]: 
DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03', '2011-01-04',
               '2011-01-05', '2011-01-06', '2011-01-07', '2011-01-08',
               '2011-01-09', '2011-01-10',
               ...
               '2011-12-23', '2011-12-24', '2011-12-25', '2011-12-26',
               '2011-12-27', '2011-12-28', '2011-12-29', '2011-12-30',
               '2011-12-31', '2012-01-01'],
              dtype='datetime64[ns]', length=366, freq='D')

date_range 是日歷范圍,bdate_range 是工作日范圍:

In [78]: index = pd.bdate_range(start, end)

In [79]: index
Out[79]: 
DatetimeIndex(['2011-01-03', '2011-01-04', '2011-01-05', '2011-01-06',
               '2011-01-07', '2011-01-10', '2011-01-11', '2011-01-12',
               '2011-01-13', '2011-01-14',
               ...
               '2011-12-19', '2011-12-20', '2011-12-21', '2011-12-22',
               '2011-12-23', '2011-12-26', '2011-12-27', '2011-12-28',
               '2011-12-29', '2011-12-30'],
              dtype='datetime64[ns]', length=260, freq='B')

兩個方法都可以帶上 start, end, 和 periods 參數。

In [84]: pd.bdate_range(end=end, periods=20)
In [83]: pd.date_range(start, end, freq="W")
In [86]: pd.date_range("2018-01-01", "2018-01-05", periods=5)

origin

使用 origin參數,可以修改 DatetimeIndex 的起點:

In [67]: pd.to_datetime([1, 2, 3], unit="D", origin=pd.Timestamp("1960-01-01"))
Out[67]: DatetimeIndex(['1960-01-02', '1960-01-03', '1960-01-04'], dtype='datetime64[ns]', freq=None)

默認情況下   origin=’unix’,  也就是起點是 1970-01-01 00:00:00.

In [68]: pd.to_datetime([1, 2, 3], unit="D")
Out[68]: DatetimeIndex(['1970-01-02', '1970-01-03', '1970-01-04'], dtype='datetime64[ns]', freq=None)

格式化

使用format參數可以對時間進行格式化:

In [51]: pd.to_datetime("2010/11/12", format="%Y/%m/%d")
Out[51]: Timestamp('2010-11-12 00:00:00')

In [52]: pd.to_datetime("12-11-2010 00:00", format="%d-%m-%Y %H:%M")
Out[52]: Timestamp('2010-11-12 00:00:00')

Period

Period 表示的是一個時間跨度,通常和freq一起使用:

In [31]: pd.Period("2011-01")
Out[31]: Period('2011-01', 'M')

In [32]: pd.Period("2012-05", freq="D")
Out[32]: Period('2012-05-01', 'D')

Period可以直接進行運算:

In [345]: p = pd.Period("2012", freq="A-DEC")

In [346]: p + 1
Out[346]: Period('2013', 'A-DEC')

In [347]: p - 3
Out[347]: Period('2009', 'A-DEC')

In [348]: p = pd.Period("2012-01", freq="2M")

In [349]: p + 2
Out[349]: Period('2012-05', '2M')

In [350]: p - 1
Out[350]: Period('2011-11', '2M')

註意,Period隻有具有相同的freq才能進行算數運算。包括 offsets 和 timedelta

In [352]: p = pd.Period("2014-07-01 09:00", freq="H")

In [353]: p + pd.offsets.Hour(2)
Out[353]: Period('2014-07-01 11:00', 'H')

In [354]: p + datetime.timedelta(minutes=120)
Out[354]: Period('2014-07-01 11:00', 'H')

In [355]: p + np.timedelta64(7200, "s")
Out[355]: Period('2014-07-01 11:00', 'H')

Period作為index可以自動被轉換為PeriodIndex:

In [38]: periods = [pd.Period("2012-01"), pd.Period("2012-02"), pd.Period("2012-03")]

In [39]: ts = pd.Series(np.random.randn(3), periods)

In [40]: type(ts.index)
Out[40]: pandas.core.indexes.period.PeriodIndex

In [41]: ts.index
Out[41]: PeriodIndex(['2012-01', '2012-02', '2012-03'], dtype='period[M]', freq='M')

In [42]: ts
Out[42]: 
2012-01   -1.135632
2012-02    1.212112
2012-03   -0.173215
Freq: M, dtype: float64

可以通過  pd.period_range 方法來創建 PeriodIndex:

In [359]: prng = pd.period_range("1/1/2011", "1/1/2012", freq="M")

In [360]: prng
Out[360]: 
PeriodIndex(['2011-01', '2011-02', '2011-03', '2011-04', '2011-05', '2011-06',
             '2011-07', '2011-08', '2011-09', '2011-10', '2011-11', '2011-12',
             '2012-01'],
            dtype='period[M]', freq='M')

還可以通過PeriodIndex直接創建:

In [361]: pd.PeriodIndex(["2011-1", "2011-2", "2011-3"], freq="M")
Out[361]: PeriodIndex(['2011-01', '2011-02', '2011-03'], dtype='period[M]', freq='M')

DateOffset

DateOffset表示的是頻率對象。它和Timedelta很類似,表示的是一個持續時間,但是有特殊的日歷規則。比如Timedelta一天肯定是24小時,而在 DateOffset中根據夏令時的不同,一天可能會有23,24或者25小時。

# This particular day contains a day light savings time transition
In [144]: ts = pd.Timestamp("2016-10-30 00:00:00", tz="Europe/Helsinki")

# Respects absolute time
In [145]: ts + pd.Timedelta(days=1)
Out[145]: Timestamp('2016-10-30 23:00:00+0200', tz='Europe/Helsinki')

# Respects calendar time
In [146]: ts + pd.DateOffset(days=1)
Out[146]: Timestamp('2016-10-31 00:00:00+0200', tz='Europe/Helsinki')

In [147]: friday = pd.Timestamp("2018-01-05")

In [148]: friday.day_name()
Out[148]: 'Friday'

# Add 2 business days (Friday --> Tuesday)
In [149]: two_business_days = 2 * pd.offsets.BDay()

In [150]: two_business_days.apply(friday)
Out[150]: Timestamp('2018-01-09 00:00:00')

In [151]: friday + two_business_days
Out[151]: Timestamp('2018-01-09 00:00:00')

In [152]: (friday + two_business_days).day_name()
Out[152]: 'Tuesday'

DateOffsets 和Frequency 運算是先關的,看一下可用的Date Offset 和它相關聯的 Frequency:

Date Offset Frequency String 描述
DateOffset None 通用的offset 類
BDay or BusinessDay ‘B’ 工作日
CDay or CustomBusinessDay ‘C’ 自定義的工作日
Week ‘W’ 一周
WeekOfMonth ‘WOM’ 每個月的第幾周的第幾天
LastWeekOfMonth ‘LWOM’ 每個月最後一周的第幾天
MonthEnd ‘M’ 日歷月末
MonthBegin ‘MS’ 日歷月初
BMonthEnd or BusinessMonthEnd ‘BM’ 營業月底
BMonthBegin or BusinessMonthBegin ‘BMS’ 營業月初
CBMonthEnd or CustomBusinessMonthEnd ‘CBM’ 自定義營業月底
CBMonthBegin or CustomBusinessMonthBegin ‘CBMS’ 自定義營業月初
SemiMonthEnd ‘SM’ 日歷月末的第15天
SemiMonthBegin ‘SMS’ 日歷月初的第15天
QuarterEnd ‘Q’ 日歷季末
QuarterBegin ‘QS’ 日歷季初
BQuarterEnd ‘BQ 工作季末
BQuarterBegin ‘BQS’ 工作季初
FY5253Quarter ‘REQ’ 零售季( 52-53 week)
YearEnd ‘A’ 日歷年末
YearBegin ‘AS’ or ‘BYS’ 日歷年初
BYearEnd ‘BA’ 營業年末
BYearBegin ‘BAS’ 營業年初
FY5253 ‘RE’ 零售年 (aka 52-53 week)
Easter None 復活節假期
BusinessHour ‘BH’ business hour
CustomBusinessHour ‘CBH’ custom business hour
Day ‘D’ 一天的絕對時間
Hour ‘H’ 一小時
Minute ‘T’ or ‘min’ 一分鐘
Second ‘S’ 一秒鐘
Milli ‘L’ or ‘ms’ 一微妙
Micro ‘U’ or ‘us’ 一毫秒
Nano ‘N’ 一納秒

DateOffset還有兩個方法  rollforward() 和 rollback() 可以將時間進行移動:

In [153]: ts = pd.Timestamp("2018-01-06 00:00:00")

In [154]: ts.day_name()
Out[154]: 'Saturday'

# BusinessHour's valid offset dates are Monday through Friday
In [155]: offset = pd.offsets.BusinessHour(start="09:00")

# Bring the date to the closest offset date (Monday)
In [156]: offset.rollforward(ts)
Out[156]: Timestamp('2018-01-08 09:00:00')

# Date is brought to the closest offset date first and then the hour is added
In [157]: ts + offset
Out[157]: Timestamp('2018-01-08 10:00:00')

上面的操作會自動保存小時,分鐘等信息,如果想要設置為  00:00:00  , 可以調用normalize() 方法:

In [158]: ts = pd.Timestamp("2014-01-01 09:00")

In [159]: day = pd.offsets.Day()

In [160]: day.apply(ts)
Out[160]: Timestamp('2014-01-02 09:00:00')

In [161]: day.apply(ts).normalize()
Out[161]: Timestamp('2014-01-02 00:00:00')

In [162]: ts = pd.Timestamp("2014-01-01 22:00")

In [163]: hour = pd.offsets.Hour()

In [164]: hour.apply(ts)
Out[164]: Timestamp('2014-01-01 23:00:00')

In [165]: hour.apply(ts).normalize()
Out[165]: Timestamp('2014-01-01 00:00:00')

In [166]: hour.apply(pd.Timestamp("2014-01-01 23:30")).normalize()
Out[166]: Timestamp('2014-01-02 00:00:00')

作為index

時間可以作為index,並且作為index的時候會有一些很方便的特性。

可以直接使用時間來獲取相應的數據:

In [99]: ts["1/31/2011"]
Out[99]: 0.11920871129693428

In [100]: ts[datetime.datetime(2011, 12, 25):]
Out[100]: 
2011-12-30    0.56702
Freq: BM, dtype: float64

In [101]: ts["10/31/2011":"12/31/2011"]
Out[101]: 
2011-10-31    0.271860
2011-11-30   -0.424972
2011-12-30    0.567020
Freq: BM, dtype: float64

獲取全年的數據:

In [102]: ts["2011"]
Out[102]: 
2011-01-31    0.119209
2011-02-28   -1.044236
2011-03-31   -0.861849
2011-04-29   -2.104569
2011-05-31   -0.494929
2011-06-30    1.071804
2011-07-29    0.721555
2011-08-31   -0.706771
2011-09-30   -1.039575
2011-10-31    0.271860
2011-11-30   -0.424972
2011-12-30    0.567020
Freq: BM, dtype: float64

獲取某個月的數據:

In [103]: ts["2011-6"]
Out[103]: 
2011-06-30    1.071804
Freq: BM, dtype: float64

DF可以接受時間作為loc的參數:

In [105]: dft
Out[105]: 
                            A
2013-01-01 00:00:00  0.276232
2013-01-01 00:01:00 -1.087401
2013-01-01 00:02:00 -0.673690
2013-01-01 00:03:00  0.113648
2013-01-01 00:04:00 -1.478427
...                       ...
2013-03-11 10:35:00 -0.747967
2013-03-11 10:36:00 -0.034523
2013-03-11 10:37:00 -0.201754
2013-03-11 10:38:00 -1.509067
2013-03-11 10:39:00 -1.693043

[100000 rows x 1 columns]

In [106]: dft.loc["2013"]
Out[106]: 
                            A
2013-01-01 00:00:00  0.276232
2013-01-01 00:01:00 -1.087401
2013-01-01 00:02:00 -0.673690
2013-01-01 00:03:00  0.113648
2013-01-01 00:04:00 -1.478427
...                       ...
2013-03-11 10:35:00 -0.747967
2013-03-11 10:36:00 -0.034523
2013-03-11 10:37:00 -0.201754
2013-03-11 10:38:00 -1.509067
2013-03-11 10:39:00 -1.693043

[100000 rows x 1 columns]

時間切片:

In [107]: dft["2013-1":"2013-2"]
Out[107]: 
                            A
2013-01-01 00:00:00  0.276232
2013-01-01 00:01:00 -1.087401
2013-01-01 00:02:00 -0.673690
2013-01-01 00:03:00  0.113648
2013-01-01 00:04:00 -1.478427
...                       ...
2013-02-28 23:55:00  0.850929
2013-02-28 23:56:00  0.976712
2013-02-28 23:57:00 -2.693884
2013-02-28 23:58:00 -1.575535
2013-02-28 23:59:00 -1.573517

[84960 rows x 1 columns]

切片和完全匹配

考慮下面的一個精度為分的Series對象:

In [120]: series_minute = pd.Series(
   .....:     [1, 2, 3],
   .....:     pd.DatetimeIndex(
   .....:         ["2011-12-31 23:59:00", "2012-01-01 00:00:00", "2012-01-01 00:02:00"]
   .....:     ),
   .....: )
   .....: 

In [121]: series_minute.index.resolution
Out[121]: 'minute'

時間精度小於分的話,返回的是一個Series對象:

In [122]: series_minute["2011-12-31 23"]
Out[122]: 
2011-12-31 23:59:00    1
dtype: int64

時間精度大於分的話,返回的是一個常量:

In [123]: series_minute["2011-12-31 23:59"]
Out[123]: 1

In [124]: series_minute["2011-12-31 23:59:00"]
Out[124]: 1

同樣的,如果精度為秒的話,小於秒會返回一個對象,等於秒會返回常量值。

時間序列的操作

Shifting

使用shift方法可以讓 time series 進行相應的移動:

In [275]: ts = pd.Series(range(len(rng)), index=rng)

In [276]: ts = ts[:5]

In [277]: ts.shift(1)
Out[277]: 
2012-01-01    NaN
2012-01-02    0.0
2012-01-03    1.0
Freq: D, dtype: float64

通過指定 freq , 可以設置shift的方式:

In [278]: ts.shift(5, freq="D")
Out[278]: 
2012-01-06    0
2012-01-07    1
2012-01-08    2
Freq: D, dtype: int64

In [279]: ts.shift(5, freq=pd.offsets.BDay())
Out[279]: 
2012-01-06    0
2012-01-09    1
2012-01-10    2
dtype: int64

In [280]: ts.shift(5, freq="BM")
Out[280]: 
2012-05-31    0
2012-05-31    1
2012-05-31    2
dtype: int64

頻率轉換

時間序列可以通過調用 asfreq 的方法轉換其頻率:

In [281]: dr = pd.date_range("1/1/2010", periods=3, freq=3 * pd.offsets.BDay())

In [282]: ts = pd.Series(np.random.randn(3), index=dr)

In [283]: ts
Out[283]: 
2010-01-01    1.494522
2010-01-06   -0.778425
2010-01-11   -0.253355
Freq: 3B, dtype: float64

In [284]: ts.asfreq(pd.offsets.BDay())
Out[284]: 
2010-01-01    1.494522
2010-01-04         NaN
2010-01-05         NaN
2010-01-06   -0.778425
2010-01-07         NaN
2010-01-08         NaN
2010-01-11   -0.253355
Freq: B, dtype: float64

asfreq還可以指定修改頻率過後的填充方法:

In [285]: ts.asfreq(pd.offsets.BDay(), method="pad")
Out[285]: 
2010-01-01    1.494522
2010-01-04    1.494522
2010-01-05    1.494522
2010-01-06   -0.778425
2010-01-07   -0.778425
2010-01-08   -0.778425
2010-01-11   -0.253355
Freq: B, dtype: float64

Resampling 重新取樣

給定的時間序列可以通過調用resample方法來重新取樣:

In [286]: rng = pd.date_range("1/1/2012", periods=100, freq="S")

In [287]: ts = pd.Series(np.random.randint(0, 500, len(rng)), index=rng)

In [288]: ts.resample("5Min").sum()
Out[288]: 
2012-01-01    25103
Freq: 5T, dtype: int64

resample 可以接受各類統計方法,比如: sum, mean, std, sem, max, min, median, first, last, ohlc。

In [289]: ts.resample("5Min").mean()
Out[289]: 
2012-01-01    251.03
Freq: 5T, dtype: float64

In [290]: ts.resample("5Min").ohlc()
Out[290]: 
            open  high  low  close
2012-01-01   308   460    9    205

In [291]: ts.resample("5Min").max()
Out[291]: 
2012-01-01    460
Freq: 5T, dtype: int64

總結

到此這篇關於Python Pandas高級教程之時間處理的文章就介紹到這瞭,更多相關Pandas時間處理內容請搜索WalkonNet以前的文章或繼續瀏覽下面的相關文章希望大傢以後多多支持WalkonNet!

推薦閱讀: