OpenCV物體跟蹤樹莓派視覺小車實現過程學習
物體跟蹤效果展示
過程:
一、初始化
def Motor_Init(): global L_Motor, R_Motor L_Motor= GPIO.PWM(l_motor,100) R_Motor = GPIO.PWM(r_motor,100) L_Motor.start(0) R_Motor.start(0) def Direction_Init(): GPIO.setup(left_back,GPIO.OUT) GPIO.setup(left_front,GPIO.OUT) GPIO.setup(l_motor,GPIO.OUT) GPIO.setup(right_front,GPIO.OUT) GPIO.setup(right_back,GPIO.OUT) GPIO.setup(r_motor,GPIO.OUT) def Servo_Init(): global pwm_servo pwm_servo=Adafruit_PCA9685.PCA9685() def Init(): GPIO.setwarnings(False) GPIO.setmode(GPIO.BCM) Direction_Init() Servo_Init() Motor_Init()
二、運動控制函數
def Front(speed): L_Motor.ChangeDutyCycle(speed) GPIO.output(left_front,1) #left_front GPIO.output(left_back,0) #left_back R_Motor.ChangeDutyCycle(speed) GPIO.output(right_front,1) #right_front GPIO.output(right_back,0) #right_back def Back(speed): L_Motor.ChangeDutyCycle(speed) GPIO.output(left_front,0) #left_front GPIO.output(left_back,1) #left_back R_Motor.ChangeDutyCycle(speed) GPIO.output(right_front,0) #right_front GPIO.output(right_back,1) #right_back def Left(speed): L_Motor.ChangeDutyCycle(speed) GPIO.output(left_front,0) #left_front GPIO.output(left_back,1) #left_back R_Motor.ChangeDutyCycle(speed) GPIO.output(right_front,1) #right_front GPIO.output(right_back,0) #right_back def Right(speed): L_Motor.ChangeDutyCycle(speed) GPIO.output(left_front,1) #left_front GPIO.output(left_back,0) #left_back R_Motor.ChangeDutyCycle(speed) GPIO.output(right_front,0) #right_front GPIO.output(right_back,1) #right_back def Stop(): L_Motor.ChangeDutyCycle(0) GPIO.output(left_front,0) #left_front GPIO.output(left_back,0) #left_back R_Motor.ChangeDutyCycle(0) GPIO.output(right_front,0) #right_front GPIO.output(right_back,0) #right_back
三、舵機角度控制
def set_servo_angle(channel,angle): angle=4096*((angle*11)+500)/20000 pwm_servo.set_pwm_freq(50) #frequency==50Hz (servo) pwm_servo.set_pwm(channel,0,int(angle))
set_servo_angle(4, 110) #top servo lengthwise #0:back 180:front set_servo_angle(5, 90) #bottom servo crosswise #0:left 180:right
上面的(4):是頂部的舵機(攝像頭上下擺動的那個舵機)
下面的(5):是底部的舵機(攝像頭左右擺動的那個舵機)
四、攝像頭&&圖像處理
# 1 Image Process img, contours = Image_Processing()
width, height = 160, 120 camera = cv2.VideoCapture(0) camera.set(3,width) camera.set(4,height)
1、打開攝像頭
打開攝像頭,並設置窗口大小。
設置小窗口的原因: 小窗口實時性比較好。
# Capture the frames ret, frame = camera.read()
2、把圖像轉換為灰度圖
# to gray gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) cv2.imshow('gray',gray)
3、 高斯濾波(去噪)
# Gausi blur blur = cv2.GaussianBlur(gray,(5,5),0)
4、亮度增強
#brighten blur = cv2.convertScaleAbs(blur, None, 1.5, 30)
5、轉換為二進制
#to binary ret,binary = cv2.threshold(blur,150,255,cv2.THRESH_BINARY_INV) cv2.imshow('binary',binary)
6、閉運算處理
#Close kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (17,17)) close = cv2.morphologyEx(binary, cv2.MORPH_CLOSE, kernel) cv2.imshow('close',close)
7、獲取輪廓
#get contours binary_c,contours,hierarchy = cv2.findContours(close, 1, cv2.CHAIN_APPROX_NONE) cv2.drawContours(image, contours, -1, (255,0,255), 2) cv2.imshow('image', image)
代碼
def Image_Processing(): # Capture the frames ret, frame = camera.read() # Crop the image image = frame cv2.imshow('frame',frame) # to gray gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) cv2.imshow('gray',gray) # Gausi blur blur = cv2.GaussianBlur(gray,(5,5),0) #brighten blur = cv2.convertScaleAbs(blur, None, 1.5, 30) #to binary ret,binary = cv2.threshold(blur,150,255,cv2.THRESH_BINARY_INV) cv2.imshow('binary',binary) #Close kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (17,17)) close = cv2.morphologyEx(binary, cv2.MORPH_CLOSE, kernel) cv2.imshow('close',close) #get contours binary_c,contours,hierarchy = cv2.findContours(close, 1, cv2.CHAIN_APPROX_NONE) cv2.drawContours(image, contours, -1, (255,0,255), 2) cv2.imshow('image', image) return frame, contours
五、獲取最大輪廓坐標
由於有可能出現多個物體,我們這裡隻識別最大的物體(深度學習可以搞分類,還沒學到這,學到瞭再做),得到它的坐標。
# 2 get coordinates x, y = Get_Coord(img, contours)
def Get_Coord(img, contours): image = img.copy() try: contour = max(contours, key=cv2.contourArea) cv2.drawContours(image, contour, -1, (255,0,255), 2) cv2.imshow('new_frame', image) # get coord M = cv2.moments(contour) x = int(M['m10']/M['m00']) y = int(M['m01']/M['m00']) print(x, y) return x,y except: print 'no objects' return 0,0
返回最大輪廓的坐標:
六、運動
根據反饋回來的坐標,判斷它的位置,進行運動。
# 3 Move Move(x,y)
1、沒有識別到輪廓(靜止)
if x==0 and y==0: Stop()
2、向前走
識別到物體,且在正中央(中間1/2區域),讓物體向前走。
#go ahead elif width/4 <x and x<(width-width/4): Front(70)
3、向左轉
物體在左邊1/4區域。
#left elif x < width/4: Left(50)
4、向右轉
物體在右邊1/4區域。
#Right elif x > (width-width/4): Right(50)
代碼
def Move(x,y): global second #stop if x==0 and y==0: Stop() #go ahead elif width/4 <x and x<(width-width/4): Front(70) #left elif x < width/4: Left(50) #Right elif x > (width-width/4): Right(50)
總代碼
#Object Tracking import RPi.GPIO as GPIO import time import Adafruit_PCA9685 import numpy as np import cv2 second = 0 width, height = 160, 120 camera = cv2.VideoCapture(0) camera.set(3,width) camera.set(4,height) l_motor = 18 left_front = 22 left_back = 27 r_motor = 23 right_front = 25 right_back = 24 def Motor_Init(): global L_Motor, R_Motor L_Motor= GPIO.PWM(l_motor,100) R_Motor = GPIO.PWM(r_motor,100) L_Motor.start(0) R_Motor.start(0) def Direction_Init(): GPIO.setup(left_back,GPIO.OUT) GPIO.setup(left_front,GPIO.OUT) GPIO.setup(l_motor,GPIO.OUT) GPIO.setup(right_front,GPIO.OUT) GPIO.setup(right_back,GPIO.OUT) GPIO.setup(r_motor,GPIO.OUT) def Servo_Init(): global pwm_servo pwm_servo=Adafruit_PCA9685.PCA9685() def Init(): GPIO.setwarnings(False) GPIO.setmode(GPIO.BCM) Direction_Init() Servo_Init() Motor_Init() def Front(speed): L_Motor.ChangeDutyCycle(speed) GPIO.output(left_front,1) #left_front GPIO.output(left_back,0) #left_back R_Motor.ChangeDutyCycle(speed) GPIO.output(right_front,1) #right_front GPIO.output(right_back,0) #right_back def Back(speed): L_Motor.ChangeDutyCycle(speed) GPIO.output(left_front,0) #left_front GPIO.output(left_back,1) #left_back R_Motor.ChangeDutyCycle(speed) GPIO.output(right_front,0) #right_front GPIO.output(right_back,1) #right_back def Left(speed): L_Motor.ChangeDutyCycle(speed) GPIO.output(left_front,0) #left_front GPIO.output(left_back,1) #left_back R_Motor.ChangeDutyCycle(speed) GPIO.output(right_front,1) #right_front GPIO.output(right_back,0) #right_back def Right(speed): L_Motor.ChangeDutyCycle(speed) GPIO.output(left_front,1) #left_front GPIO.output(left_back,0) #left_back R_Motor.ChangeDutyCycle(speed) GPIO.output(right_front,0) #right_front GPIO.output(right_back,1) #right_back def Stop(): L_Motor.ChangeDutyCycle(0) GPIO.output(left_front,0) #left_front GPIO.output(left_back,0) #left_back R_Motor.ChangeDutyCycle(0) GPIO.output(right_front,0) #right_front GPIO.output(right_back,0) #right_back def set_servo_angle(channel,angle): angle=4096*((angle*11)+500)/20000 pwm_servo.set_pwm_freq(50) #frequency==50Hz (servo) pwm_servo.set_pwm(channel,0,int(angle)) def Image_Processing(): # Capture the frames ret, frame = camera.read() # Crop the image image = frame cv2.imshow('frame',frame) # to gray gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) cv2.imshow('gray',gray) # Gausi blur blur = cv2.GaussianBlur(gray,(5,5),0) #brighten blur = cv2.convertScaleAbs(blur, None, 1.5, 30) #to binary ret,binary = cv2.threshold(blur,150,255,cv2.THRESH_BINARY_INV) cv2.imshow('binary',binary) #Close kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (17,17)) close = cv2.morphologyEx(binary, cv2.MORPH_CLOSE, kernel) cv2.imshow('close',close) #get contours binary_c,contours,hierarchy = cv2.findContours(close, 1, cv2.CHAIN_APPROX_NONE) cv2.drawContours(image, contours, -1, (255,0,255), 2) cv2.imshow('image', image) return frame, contours def Get_Coord(img, contours): image = img.copy() try: contour = max(contours, key=cv2.contourArea) cv2.drawContours(image, contour, -1, (255,0,255), 2) cv2.imshow('new_frame', image) # get coord M = cv2.moments(contour) x = int(M['m10']/M['m00']) y = int(M['m01']/M['m00']) print(x, y) return x,y except: print 'no objects' return 0,0 def Move(x,y): global second #stop if x==0 and y==0: Stop() #go ahead elif width/4 <x and x<(width-width/4): Front(70) #left elif x < width/4: Left(50) #Right elif x > (width-width/4): Right(50) if __name__ == '__main__': Init() set_servo_angle(4, 110) #top servo lengthwise #0:back 180:front set_servo_angle(5, 90) #bottom servo crosswise #0:left 180:right while 1: # 1 Image Process img, contours = Image_Processing() # 2 get coordinates x, y = Get_Coord(img, contours) # 3 Move Move(x,y) # must include this codes(otherwise you can't open camera successfully) if cv2.waitKey(1) & 0xFF == ord('q'): Stop() GPIO.cleanup() break #Front(50) #Back(50) #$Left(50) #Right(50) #time.sleep(1) #Stop()
檢測原理是基於最大輪廓的檢測,沒有用深度學習的分類,所以容易受到幹擾,後期學完深度學習會繼續優化。有意見或者想法的朋友歡迎交流。
以上就是OpenCV物體跟蹤樹莓派視覺小車實現過程學習的詳細內容,更多關於OpenCV物體跟蹤樹莓派視覺小車的資料請關註WalkonNet其它相關文章!
推薦閱讀:
- 基於opencv實現車道線檢測
- OpenCV圖像輪廓的繪制方法
- OpenCV 輪廓周圍繪制矩形框和圓形框的方法
- python和opencv構建運動檢測器的實現
- OpenCV-Python實現輪廓的特征值