使用torchtext導入NLP數據集的操作

如果你是pytorch的用戶,可能你會很熟悉pytorch生態圈中專門預處理圖像數據集的torchvision庫。

從torchtext這個名字我們也能大概猜到該庫是pytorch圈中用來預處理文本數據集的庫,但這方面的教程網絡上比較少,今天我就講講這個特別有用的文本分析庫。

簡介

torchtext在文本數據預處理方面特別強大,但我們要知道ta能做什麼、不能做什麼,並如何將我們的需求用torchtext實現。雖然torchtext是為pytorch而設計的,但是也可以與keras、tensorflow等結合使用。

官方文檔地址 https://torchtext.readthedocs.io/en/latest/index.html

# 安裝	
!pip3 install torchtext

自然語言處理預處理的工作流程:

1、Train/Validation/Test數據集分割

2、文件數據導入(File Loading)

3、分詞(Tokenization) 文本字符串切分為詞語列表

4、構建詞典(Vocab) 根據訓練的預料數據集構建詞典

5、數字映射(Numericalize/Indexify) 根據詞典,將數據從詞語映射成數字,方便機器學習

6、導入預訓練好的詞向量(word vector)

7、分批(Batch) 數據集太大的話,不能一次性讓機器讀取,否則機器會內存崩潰。解決辦法就是將大的數據集分成更小份的數據集,分批處理

8、向量映射(Embedding Lookup) 根據預處理好的詞向量數據集,將5的結果中每個詞語對應的索引值變成 詞語向量

上面8個步驟,torchtext實現瞭2-7。第一步需要我們自己diy,好在這一步沒什麼難度

"The quick fox jumped over a lazy dog."	
# 分詞	
["The", "quick", "fox", "jumped", "over", "a", "lazy", "dog", "."]	
# 構建詞典	
{"The" -> 0, 	
"quick"-> 1, 	
"fox" -> 2,	
...}	
# 數字映射(將每個詞根據詞典映射為對應的索引值)	
[0, 1, 2, ...]	
# 向量映射(按照導入的預訓練好的詞向量數據集,把詞語映射成向量)	
[	
  [0.3, 0.2, 0.5],	
  [0.6, 0., 0.1],	
  [0.8, 01., 0.4],	
  ...	
]

一、數據集分割

一般我們做機器學習會將數據分為訓練集和測試集,而在深度學習中,需要多輪訓練學習,每次的學習過程都包括訓練和驗證,最後再進行測試。所以需要將數據分成訓練、驗證和測試數據。

import pandas as pd	
import numpy as np	
def split_csv(infile, trainfile, valtestfile, seed=999, ratio=0.2):	
    df = pd.read_csv(infile)	
    df["text"] = df.text.str.replace("\n", " ")	
    idxs = np.arange(df.shape[0])	
    np.random.seed(seed)	
    np.random.shuffle(idxs)	
    val_size = int(len(idxs) * ratio)	
    df.iloc[idxs[:val_size], :].to_csv(valtestfile, index=False)	
    df.iloc[idxs[val_size:], :].to_csv(trainfile, index=False)	
#先將sms_spam.csv數據分為train.csv和test.csv	
split_csv(infile='data/sms_spam.csv', 	
          trainfile='data/train.csv', 	
          valtestfile='data/test.csv', 	
          seed=999, 	
          ratio=0.2)	
#再將train.csv分為dataset_train.csv和dataset_valid.csv	
split_csv(infile='data/train.csv', 	
          trainfile='data/dataset_train.csv', 	
          valtestfile='data/dataset_valid.csv', 	
          seed=999, 	
          ratio=0.2)

1.1 參數解讀

split_csv(infile, trainfile, valtestfile, seed, ratio)

infile:待分割的csv文件

trainfile:分割出的訓練cs文件

valtestfile:分割出的測試或驗證csv文件

seed:隨機種子,保證每次的隨機分割隨機性一致

ratio:測試(驗證)集占數據的比例

經過上面的操作,我們已經構建出實驗所需的數據:

訓練數據(這裡說的是dataset_train.csv而不是train.csv)

驗證數據(dataset_train.csv)

測試數據(test.csv)。

二、分詞

導入的數據是字符串形式的文本,我們需要將其分詞成詞語列表。英文最精準的分詞器如下:

import re	
import spacy	
import jieba	
	
#英文的分詞器	
NLP = spacy.load('en_core_web_sm')	
MAX_CHARS = 20000  #為瞭降低處理的數據規模,可以設置最大文本長度,超過的部分忽略,	
def tokenize1(text):	
    text = re.sub(r"\s", " ", text)	
    if (len(text) > MAX_CHARS):	
        text = text[:MAX_CHARS]	
    return [	
        x.text for x in NLP.tokenizer(text) if x.text != " " and len(x.text)>1]	
#有的同學tokenize1用不瞭,可以使用tokenize2。	
def tokenize2(text):	
    text = re.sub(r"\s", " ", text)	
    if (len(text) > MAX_CHARS):	
        text = text[:MAX_CHARS]	
    return [w for w in text.split(' ') if len(w)>1]	
#中文的分類器比較簡單	
def tokenize3(text):	
    if (len(text) > MAX_CHARS):	
        text = text[:MAX_CHARS]	
    return [w for w in jieba.lcut(text) if len(w)>1]	
	
print(tokenize1('Python is powerful and beautiful!'))	
print(tokenize2('Python is powerful and beautiful!'))	
print(tokenize3('Python強大而美麗!'))

Run

['Python', 'is', 'powerful', 'and', 'beautiful']	
['Python', 'is', 'powerful', 'and', 'beautiful!']	
['Python', '強大', '美麗']

三、 導入數據

torchtext中使用torchtext.data.TabularDataset來導入自己的數據集,並且我們需要先定義字段的數據類型才能導入。要按照csv中的字段順序來定義字段的數據類型,我們的csv文件中有兩個字段(label、text)

import pandas as pd	
df = pd.read_csv('data/train.csv')	
df.head()

import torch	
import torchtext	
from torchtext import data	
import logging	
LABEL = data.LabelField(dtype = torch.float)	
TEXT = data.Field(tokenize = tokenize1, 	
                      lower=True,	
                      fix_length=100,	
                      stop_words=None)	
train, valid, test = data.TabularDataset.splits(path='data', #數據所在文件夾	
                                                train='dataset_train.csv', 	
                                                validation='dataset_valid.csv',	
                                                test = 'test.csv',	
                                                format='csv', 	
                                                skip_header=True,	
                                                fields = [('label', LABEL),('text', TEXT)])	
train

Run

<torchtext.data.dataset.TabularDataset at 0x120d8ab38>

四、構建詞典

根據訓練(上面得到的train)的預料數據集構建詞典。這兩有兩種構建方式,一種是常規的不使用詞向量,而另一種是使用向量的。

區別僅僅在於vectors是否傳入參數

vects =  torchtext.vocab.Vectors(name = 'glove.6B.100d.txt', 	
                                 cache = 'data/')	
TEXT.build_vocab(train,	
                 max_size=2000, 	
                 min_freq=50,   	
                 vectors=vects,  #vects替換為None則不使用詞向量	
                 unk_init = torch.Tensor.normal_)

4.1 TEXT是Field對象,該對象的方法有

print(type(TEXT)) 
print(type(TEXT.vocab))

Run

<class 'torchtext.data.field.Field'> 
<class 'torchtext.vocab.Vocab'>

詞典-詞語列表形式,這裡隻顯示前20個

TEXT.vocab.itos[:20]
['<unk>', 
 '<pad>', 
 'to', 
 'you', 
 'the', 
 '...', 
 'and', 
 'is', 
 'in', 
 'me', 
 'it', 
 'my', 
 'for', 
 'your', 
 '..', 
 'do', 
 'of', 
 'have', 
 'that', 
 'call']

詞典-字典形式

TEXT.vocab.stoi
defaultdict(<bound method Vocab._default_unk_index of <torchtext.vocab.Vocab object at 0x1214b1e48>>, 
            {'<unk>': 0, 
             '<pad>': 1, 
             'to': 2, 
             'you': 3, 
             'the': 4, 
             '...': 5, 
             'and': 6, 
             'is': 7, 
             'in': 8, 
             .... 
             'mother': 0, 
             'english': 0, 
             'son': 0, 
             'gradfather': 0, 
             'father': 0, 
             'german': 0)

4.2 註意

train數據中生成的詞典,裡面有,這裡有兩個要註意:

是指不認識的詞語都編碼為

german、father等都編碼為0,這是因為我們要求詞典中出現的詞語詞頻必須大於50,小於50的都統一分配一個索引值。

詞語you對應的詞向量

TEXT.vocab.vectors[3]
tensor([-0.4989,  0.7660,  0.8975, -0.7855, -0.6855,  0.6261, -0.3965,  0.3491,	
         0.3333, -0.4523,  0.6122,  0.0759,  0.2253,  0.1637,  0.2810, -0.2476,	
         0.0099,  0.7111, -0.7586,  0.8742,  0.0031,  0.3580, -0.3523, -0.6650,	
         0.3845,  0.6268, -0.5154, -0.9665,  0.6152, -0.7545, -0.0124,  1.1188,	
         0.3572,  0.0072,  0.2025,  0.5011, -0.4405,  0.1066,  0.7939, -0.8095,	
        -0.0156, -0.2289, -0.3420, -1.0065, -0.8763,  0.1516, -0.0853, -0.6465,	
        -0.1673, -1.4499, -0.0066,  0.0048, -0.0124,  1.0474, -0.1938, -2.5991,	
         0.4053,  0.4380,  1.9332,  0.4581, -0.0488,  1.4308, -0.7864, -0.2079,	
         1.0900,  0.2482,  1.1487,  0.5148, -0.2183, -0.4572,  0.1389, -0.2637,	
         0.1365, -0.6054,  0.0996,  0.2334,  0.1365, -0.1846, -0.0477, -0.1839,	
         0.5272, -0.2885, -1.0742, -0.0467, -1.8302, -0.2120,  0.0298, -0.3096,	
        -0.4339, -0.3646, -0.3274, -0.0093,  0.4721, -0.5169, -0.5918, -0.3234,	
         0.2005, -0.4118,  0.4054,  0.7850])

4.3 計算詞語的相似性

得用詞向量構建特征工程時能保留更多的信息量(詞語之間的關系)

這樣可以看出詞語的向量方向

是同義還是反義

距離遠近。

而這裡我們粗糙的用餘弦定理計算詞語之間的關系,沒有近義反義關系,隻能體現出距離遠近(相似性)。

from sklearn.metrics.pairwise import cosine_similarity 
import numpy as np 
def simalarity(word1, word2): 
    word_vec1 = TEXT.vocab.vectors[TEXT.vocab.stoi[word1]].tolist() 
    word_vec2 = TEXT.vocab.vectors[TEXT.vocab.stoi[word2]].tolist() 
    vectors = np.array([word_vec1, word_vec2]) 
    return cosine_similarity(vectors) 
print(simalarity('you', 'your'))

Run

[[1.         0.83483314] 
 [0.83483314 1.        ]]

五、get_dataset函數

相似的功能合並成模塊,可以增加代碼的可讀性。這裡我們把階段性合並三四的成果get_dataset函數

from torchtext import data	
import torchtext	
import torch	
import logging	
LOGGER = logging.getLogger("導入數據")	
def get_dataset(stop_words=None):	
    #定義字段的數據類型	
    LABEL = data.LabelField(dtype = torch.float)	
    TEXT = data.Field(tokenize = tokenize1, 	
                      lower=True,	
                      fix_length=100,	
                      stop_words=stop_words)	
    LOGGER.debug("準備讀取csv數據...")	
    train, valid, test = data.TabularDataset.splits(path='data', #數據所在文件夾	
                                         train='dataset_train.csv', 	
                                         validation='dataset_valid.csv',	
                                         test = 'test.csv',	
                                         format='csv', 	
                                         skip_header=True,	
                                         fields = [('label', LABEL),('text', TEXT)])	
    LOGGER.debug("準備導入詞向量...")	
    vectors = torchtext.vocab.Vectors(name = 'glove.6B.100d.txt', 	
                                      cache = 'data/')	
    LOGGER.debug("準備構建詞典...")	
    TEXT.build_vocab(	
        train,	
        max_size=2000, 	
        min_freq=50,   	
        vectors=vectors,	
        unk_init = torch.Tensor.normal_)	
    LOGGER.debug("完成數據導入!")	
    return train,valid, test, TEXT

get_dataset函數內部參數解讀

data.Field(tokenize,fix_length)定義字段

tokenize=tokenize1 使用英文的分詞器tokenize1函數。

fix_length=100 讓每個文本分詞後的長度均為100個詞;不足100的,可以填充為100。超過100的,隻保留100

data.TabularDataset.splits(train, validation,test, format,skip_header,fields)讀取訓練驗證數據,可以一次性讀取多個文件

train/validation/test 訓練驗證測試對應的csv文件名

skip_header=True 如果csv有抬頭,設置為True可以避免pytorch將抬頭當成一條記錄

fields = [(‘label’, LABEL), (‘text’, TEXT)] 定義字段的類型,註意fields要按照csv抬頭中字段的順序設置

torchtext.vocab.Vectors(name, cache)導入詞向量數據文件

name= ‘glove.6B.100d.txt’ 從網上下載預訓練好的詞向量glove.6B.100d.txt文件(該文件有6B個詞,每個詞向量長度為100)

cache = ‘data/’ 文件夾位置。glove文件存放在data文件夾內

TEXT.buildvocab(maxsize,minfreq,unkinit) 構建詞典,其中

max_size=2000 設定瞭詞典最大詞語數

min_freq=50設定瞭詞典中的詞語保證最少出現50次

unkinit=torch.Tensor.normal 詞典中沒有的詞語對應的向量統一用torch.Tensor.normal_填充

六、分批次

數據集太大的話,一次性讓機器讀取容易導致內存崩潰。解決辦法就是將大的數據集分成更小份的數據集,分批處理

def split2batches(batch_size=32, device='cpu'):	
    train, valid, test, TEXT = get_dataset() #datasets按順序包含train、valid、test三部分	
    LOGGER.debug("準備數據分批次...")	
    train_iterator, valid_iterator, test_iterator = data.BucketIterator.splits((train, valid, test), 	
                                                                               batch_size = batch_size,	
                                                                               sort = False,	
                                                                               device = device)	
    LOGGER.debug("完成數據分批次!")	
    return train_iterator, valid_iterator, test_iterator, TEXT

6.1參數解讀

split2batches(batch_size=32, device=0)

batch_size 每批次最多加入多少條評論

device device=’cpu’在CPU中運行,device=’gpu’ 在GPU中運行。普通電腦都隻有CPU的 該函數返回的是BucketIterator對象

train_iterator, valid_iterator, test_iterator, TEXT = split2batches() 
train_iterator

Run

<torchtext.data.iterator.BucketIterator at 0x12b0c7898>

查看train_iterator數據類型

type(train_iterator)
torchtext.data.iterator.BucketIterator

6.2BucketIterator對象

這裡以trainiterator為例(validiterator, test_iterator都是相同的對象)。因為本例中數據有兩個字段label和text,所以

獲取train_iterator的dataset

train_iterator.dataset
<torchtext.data.dataset.TabularDataset at 0x12e9c57b8>

獲取train_iterator中的第8個對象

train_iterator.dataset.examples[7]
<torchtext.data.example.Example at 0x12a82dcf8>

獲取train_iterator中的第8個對象的lebel字段的內容

train_iterator.dataset.examples[7].label
'ham'

獲取train_iterator中的第8個對象的text字段的內容

train_iterator.dataset.examples[7].text
['were', 'trying', 'to', 'find', 'chinese', 'food', 'place', 'around', 'here']

總結

到這裡我們已經學習瞭torchtext的常用知識。使用本代碼要註意:

我們假設數據集是csv文件,torchtext可以還可以處理tsv、json。但如果你想使用本代碼,請先轉為csv

本教程的csv文件隻有兩個字段,label和text。如果你的數據有更多的字段,記得再代碼中增加字段定義

本教程默認場景是英文,且使用詞向量。所以記得對應位置下載本教程的glove.6B.100d.txt。

glove下載地址https://nlp.stanford.edu/projects/glove/

以上為個人經驗,希望能給大傢一個參考,也希望大傢多多支持WalkonNet。

推薦閱讀: