Python機器學習之基於Pytorch實現貓狗分類
一、環境配置
安裝Anaconda
具體安裝過程,請點擊本文
配置Pytorch
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple torch pip install -i https://pypi.tuna.tsinghua.edu.cn/simple torchvision
二、數據集的準備
1.數據集的下載
kaggle網站的數據集下載地址:
https://www.kaggle.com/lizhensheng/-2000
2.數據集的分類
將下載的數據集進行解壓操作,然後進行分類
分類如下(每個文件夾下包括cats和dogs文件夾)
三、貓狗分類的實例
導入相應的庫
# 導入庫 import torch.nn.functional as F import torch.optim as optim import torch import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data import torch.utils.data.distributed import torchvision.transforms as transforms import torchvision.datasets as datasets
設置超參數
# 設置超參數 #每次的個數 BATCH_SIZE = 20 #迭代次數 EPOCHS = 10 #采用cpu還是gpu進行計算 DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
圖像處理與圖像增強
# 數據預處理 transform = transforms.Compose([ transforms.Resize(100), transforms.RandomVerticalFlip(), transforms.RandomCrop(50), transforms.RandomResizedCrop(150), transforms.ColorJitter(brightness=0.5, contrast=0.5, hue=0.5), transforms.ToTensor(), transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]) ])
讀取數據集和導入數據
# 讀取數據 dataset_train = datasets.ImageFolder('E:\\Cat_And_Dog\\kaggle\\cats_and_dogs_small\\train', transform) print(dataset_train.imgs) # 對應文件夾的label print(dataset_train.class_to_idx) dataset_test = datasets.ImageFolder('E:\\Cat_And_Dog\\kaggle\\cats_and_dogs_small\\validation', transform) # 對應文件夾的label print(dataset_test.class_to_idx) # 導入數據 train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=BATCH_SIZE, shuffle=True) test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=BATCH_SIZE, shuffle=True)
定義網絡模型
# 定義網絡 class ConvNet(nn.Module): def __init__(self): super(ConvNet, self).__init__() self.conv1 = nn.Conv2d(3, 32, 3) self.max_pool1 = nn.MaxPool2d(2) self.conv2 = nn.Conv2d(32, 64, 3) self.max_pool2 = nn.MaxPool2d(2) self.conv3 = nn.Conv2d(64, 64, 3) self.conv4 = nn.Conv2d(64, 64, 3) self.max_pool3 = nn.MaxPool2d(2) self.conv5 = nn.Conv2d(64, 128, 3) self.conv6 = nn.Conv2d(128, 128, 3) self.max_pool4 = nn.MaxPool2d(2) self.fc1 = nn.Linear(4608, 512) self.fc2 = nn.Linear(512, 1) def forward(self, x): in_size = x.size(0) x = self.conv1(x) x = F.relu(x) x = self.max_pool1(x) x = self.conv2(x) x = F.relu(x) x = self.max_pool2(x) x = self.conv3(x) x = F.relu(x) x = self.conv4(x) x = F.relu(x) x = self.max_pool3(x) x = self.conv5(x) x = F.relu(x) x = self.conv6(x) x = F.relu(x) x = self.max_pool4(x) # 展開 x = x.view(in_size, -1) x = self.fc1(x) x = F.relu(x) x = self.fc2(x) x = torch.sigmoid(x) return x modellr = 1e-4 # 實例化模型並且移動到GPU model = ConvNet().to(DEVICE) # 選擇簡單暴力的Adam優化器,學習率調低 optimizer = optim.Adam(model.parameters(), lr=modellr)
調整學習率
def adjust_learning_rate(optimizer, epoch): """Sets the learning rate to the initial LR decayed by 10 every 30 epochs""" modellrnew = modellr * (0.1 ** (epoch // 5)) print("lr:",modellrnew) for param_group in optimizer.param_groups: param_group['lr'] = modellrnew
定義訓練過程
# 定義訓練過程 def train(model, device, train_loader, optimizer, epoch): model.train() for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device), target.to(device).float().unsqueeze(1) optimizer.zero_grad() output = model(data) # print(output) loss = F.binary_cross_entropy(output, target) loss.backward() optimizer.step() if (batch_idx + 1) % 10 == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, (batch_idx + 1) * len(data), len(train_loader.dataset), 100. * (batch_idx + 1) / len(train_loader), loss.item())) # 定義測試過程 def val(model, device, test_loader): model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device).float().unsqueeze(1) output = model(data) # print(output) test_loss += F.binary_cross_entropy(output, target, reduction='mean').item() pred = torch.tensor([[1] if num[0] >= 0.5 else [0] for num in output]).to(device) correct += pred.eq(target.long()).sum().item() print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset)))
定義保存模型和訓練
# 訓練 for epoch in range(1, EPOCHS + 1): adjust_learning_rate(optimizer, epoch) train(model, DEVICE, train_loader, optimizer, epoch) val(model, DEVICE, test_loader) torch.save(model, 'E:\\Cat_And_Dog\\kaggle\\model.pth')
訓練結果
四、實現分類預測測試
準備預測的圖片進行測試
from __future__ import print_function, division from PIL import Image from torchvision import transforms import torch.nn.functional as F import torch import torch.nn as nn import torch.nn.parallel # 定義網絡 class ConvNet(nn.Module): def __init__(self): super(ConvNet, self).__init__() self.conv1 = nn.Conv2d(3, 32, 3) self.max_pool1 = nn.MaxPool2d(2) self.conv2 = nn.Conv2d(32, 64, 3) self.max_pool2 = nn.MaxPool2d(2) self.conv3 = nn.Conv2d(64, 64, 3) self.conv4 = nn.Conv2d(64, 64, 3) self.max_pool3 = nn.MaxPool2d(2) self.conv5 = nn.Conv2d(64, 128, 3) self.conv6 = nn.Conv2d(128, 128, 3) self.max_pool4 = nn.MaxPool2d(2) self.fc1 = nn.Linear(4608, 512) self.fc2 = nn.Linear(512, 1) def forward(self, x): in_size = x.size(0) x = self.conv1(x) x = F.relu(x) x = self.max_pool1(x) x = self.conv2(x) x = F.relu(x) x = self.max_pool2(x) x = self.conv3(x) x = F.relu(x) x = self.conv4(x) x = F.relu(x) x = self.max_pool3(x) x = self.conv5(x) x = F.relu(x) x = self.conv6(x) x = F.relu(x) x = self.max_pool4(x) # 展開 x = x.view(in_size, -1) x = self.fc1(x) x = F.relu(x) x = self.fc2(x) x = torch.sigmoid(x) return x # 模型存儲路徑 model_save_path = 'E:\\Cat_And_Dog\\kaggle\\model.pth' # ------------------------ 加載數據 --------------------------- # # Data augmentation and normalization for training # Just normalization for validation # 定義預訓練變換 # 數據預處理 transform_test = transforms.Compose([ transforms.Resize(100), transforms.RandomVerticalFlip(), transforms.RandomCrop(50), transforms.RandomResizedCrop(150), transforms.ColorJitter(brightness=0.5, contrast=0.5, hue=0.5), transforms.ToTensor(), transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]) ]) class_names = ['cat', 'dog'] # 這個順序很重要,要和訓練時候的類名順序一致 device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # ------------------------ 載入模型並且訓練 --------------------------- # model = torch.load(model_save_path) model.eval() # print(model) image_PIL = Image.open('E:\\Cat_And_Dog\\kaggle\\cats_and_dogs_small\\test\\cats\\cat.1500.jpg') # image_tensor = transform_test(image_PIL) # 以下語句等效於 image_tensor = torch.unsqueeze(image_tensor, 0) image_tensor.unsqueeze_(0) # 沒有這句話會報錯 image_tensor = image_tensor.to(device) out = model(image_tensor) pred = torch.tensor([[1] if num[0] >= 0.5 else [0] for num in out]).to(device) print(class_names[pred])
預測結果
實際訓練的過程來看,整體看準確度不高。而經過測試發現,該模型隻能對於貓進行識別,對於狗則會誤判。
五、參考資料
實現貓狗分類
到此這篇關於Python機器學習之基於Pytorch實現貓狗分類的文章就介紹到這瞭,更多相關Pytorch實現貓狗分類內容請搜索WalkonNet以前的文章或繼續瀏覽下面的相關文章希望大傢以後多多支持WalkonNet!
推薦閱讀:
- Pytorch實現圖像識別之數字識別(附詳細註釋)
- pytorch實現加載保存查看checkpoint文件
- Pytorch深度學習之實現病蟲害圖像分類
- PyTorch實現MNIST數據集手寫數字識別詳情
- pytorch從csv加載自定義數據模板的操作