Opencv 圖片的OCR識別的實戰示例
一、圖片變換
0、導入模塊
導入相關函數,遇到報錯的話,直接pip install 函數名。
import numpy as np import argparse import cv2
參數初始化
ap = argparse.ArgumentParser() ap.add_argument("-i", "--image", required = True, help = "Path to the image to be scanned") args = vars(ap.parse_args())
Parameters:
–image images\page.jpg
1、重寫resize函數
def resize(image, width=None, height=None, inter=cv2.INTER_AREA): dim = None (h, w) = image.shape[:2] if width is None and height is None: return image if width is None: r = height / float(h) dim = (int(w * r), height) else: r = width / float(w) dim = (width, int(h * r)) resized = cv2.resize(image, dim, interpolation=inter) return resized
2、預處理
讀取圖片後進行重置大小,並計算縮放倍數;進行灰度化、高斯濾波以及Canny輪廓提取
image = cv2.imread(args["image"]) ratio = image.shape[0] / 500.0 orig = image.copy() image = resize(orig, height = 500) gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) gray = cv2.GaussianBlur(gray, (5, 5), 0) edged = cv2.Canny(gray, 75, 200)
3、邊緣檢測
檢測輪廓並排序,遍歷輪廓。
cnts = cv2.findContours(edged.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)[0]# 輪廓檢測 cnts = sorted(cnts, key = cv2.contourArea, reverse = True)[:5]#保留前5個輪廓 # 遍歷輪廓 for c in cnts: # 計算輪廓近似 peri = cv2.arcLength(c, True)# 計算輪廓長度,C表示輸入的點集,True表示輪廓是封閉的 #(C表示輸入的點集,epslion判斷點到相對應的line segment 的距離的閾值,曲線是否閉合的標志位) approx = cv2.approxPolyDP(c, 0.02 * peri, True) # 4個點的時候就拿出來 if len(approx) == 4: screenCnt = approx break
4、透視變換
畫出近似輪廓,透視變換,二值處理
cv2.drawContours(image, [screenCnt], -1, (0, 255, 0), 2) warped = four_point_transform(orig, screenCnt.reshape(4, 2) * ratio)#透視變換 # 二值處理 warped = cv2.cvtColor(warped, cv2.COLOR_BGR2GRAY) ref = cv2.threshold(warped, 100, 255, cv2.THRESH_BINARY)[1] cv2.imwrite('scan.jpg', ref)
二、OCR識別
0、安裝tesseract-ocr
鏈接: 下載
在環境變量、系統變量的Path裡面添加安裝路徑,例如:E:\Program Files (x86)\Tesseract-OCR
tesseract -v#打開命令行,進行測試 tesseract XXX.png result#得到結果 pip install pytesseract#安裝依賴包
打開python安裝路徑裡面的python文件,例如C:\ProgramData\Anaconda3\Lib\site-packages\pytesseract\pytesseract.py
將tesseract_cmd 修改為絕對路徑即可,例如:tesseract_cmd = ‘C:/Program Files (x86)/Tesseract-OCR/tesseract.exe’
1、導入模塊
from PIL import Image import pytesseract import cv2 import os
2、預處理
讀取圖片、灰度化、濾波
image = cv2.imread('scan.jpg') gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) gray = cv2.medianBlur(gray, 3)
3、輸出結果
filename = "{}.png".format(os.getpid()) cv2.imwrite(filename, gray) text = pytesseract.image_to_string(Image.open(filename)) print(text) os.remove(filename)
到此這篇關於Opencv 圖片的OCR識別的實戰示例的文章就介紹到這瞭,更多相關Opencv 圖片的OCR識別內容請搜索WalkonNet以前的文章或繼續瀏覽下面的相關文章希望大傢以後多多支持WalkonNet!
推薦閱讀:
- python pytesseract庫的實例用法
- 如何利用Python識別圖片中的文字詳解
- Python OpenCV機器學習之圖像識別詳解
- Python+Selenium+Pytesseract實現圖片驗證碼識別
- python OpenCV實現答題卡識別判卷