OpenCV結合selenium實現滑塊驗證碼
本次案例使用OpenCV和selenium來解決一下滑塊驗證碼
先說一下思路:
- 彈出滑塊驗證碼後使用selenium元素截圖將驗證碼整個背景圖截取出來
- 將需要滑動的小圖單獨截取出來,最好將小圖與背景圖頂部的像素距離獲取到,這樣可以將背景圖上下多餘的邊框截取掉
- 使用OpenCV將背景圖和小圖進行灰度處理,並對小圖再次進行二值化全局閾值,這樣就可以利用OpenCV在背景圖中找到小圖所在的位置
- 用OpenCV獲取到相差的距離後利用selenium的鼠標拖動方法進行拖拉至終點。
詳細步驟:
先獲取驗證碼背景圖,selenium瀏覽器對象中使用screenshot方法可以將指定的元素圖片截取出來
import os from selenium import webdriver browser = webdriver.Chrome() browser.get("https://www.toutiao.com/c/user/token/MS4wLjABAAAA4EKNlqVeNTTuEdWn0VytNS8cdODKTsNNwLTxOnigzZtclro2Kylvway5mTyTUKvz/") save_path = os.path.join(os.path.expanduser('~'), "Desktop", "background.png") browser.find_element_by_id("element_id_name").screenshot(save_path)
截取後的驗證碼背景圖和需要滑動的小圖 如:
再將小圖與背景圖頂部的像素距離獲取到,指的是下面圖中紅邊的高度:
如果HTML元素中小圖是單獨存在時,那麼它的高度在會定義在頁面元素中,使用selenium頁面元素對象的value_of_css_property方法可以獲取到像素距離。
獲取這個是因為要把背景圖的上下兩邊多餘部分進行切除,從而保留關鍵的圖像部位,能夠大幅度提高識別率。
element_object = browser.find_element_by_xpath("xpath_element") px = element_object.value_of_css_property("top")
接下來就要對圖像進行灰度處理:
import numpy import cv2 def make_threshold(img): """全局閾值 將圖片二值化,去除噪點,讓其黑白分明""" x = numpy.ones(img.shape, numpy.uint8) * 255 y = img - x result, thresh = cv2.threshold(y, 127, 255, cv2.THRESH_BINARY_INV) # 將二值化後的結果返回 return thresh class ComputeDistance: """獲取需要滑動的距離 將驗證碼背景大圖和需要滑動的小圖進行處理,先在大圖中找到相似的小圖位置,再獲取對應的像素偏移量""" def __init__(self, Background_path: str, image_to_move: str, offset_top_px: int): """ :param Background_path: 驗證碼背景大圖 :param image_to_move: 需要滑動的小圖 :param offset_top_px: 小圖距離在大圖上的頂部邊距(像素偏移量) """ self.Background_img = cv2.imread(Background_path) self.offset_px = offset_top_px self.show_img = show_img small_img_data = cv2.imread(image_to_move, cv2.IMREAD_UNCHANGED) # 得到一個改變維度為50的乘以值 scaleX = 50 / small_img_data.shape[1] # 使用最近鄰插值法縮放,讓xy乘以scaleX,得到縮放後shape為50x50的圖片 self.tpl_img = cv2.resize(small_img_data, (0, 0), fx=scaleX, fy=scaleX) self.Background_cutting = None def tpl_op(self): # 將小圖轉換為灰色 tpl_gray = cv2.cvtColor(self.tpl_img, cv2.COLOR_BGR2GRAY) h, w = tpl_gray.shape # 將背景圖轉換為灰色 # Background_gray = cv2.cvtColor(self.Background_img, cv2.COLOR_BGR2GRAY) Background_gray = cv2.cvtColor(self.Background_cutting, cv2.COLOR_BGR2GRAY) # 得到二值化後的小圖 threshold_img = make_threshold(tpl_gray) # 將小圖與大圖進行模板匹配,找到所對應的位置 result = cv2.matchTemplate(Background_gray, threshold_img, cv2.TM_CCOEFF_NORMED) min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(result) # 左上角位置 top_left = (max_loc[0] - 5, max_loc[1] + self.offset_px) # 右下角位置 bottom_right = (top_left[0] + w, top_left[1] + h) # 在源顏色大圖中畫出小圖需要移動到的終點位置 """rectangle(圖片源數據, 左上角, 右下角, 顏色, 畫筆厚度)""" cv2.rectangle(self.Background_img, top_left, bottom_right, (0, 0, 255), 2) def cutting_background(self): """切割圖片的上下邊框""" height = self.tpl_img.shape[0] # 將大圖中上下多餘部分去除,如: Background_img[40:110, :] self.Background_cutting = self.Background_img[self.offset_px - 10: self.offset_px + height + 10, :] def run(self): # 如果小圖的長度與大圖的長度一致則不用將大圖進行切割,可以將self.cutting_background()註釋掉 self.cutting_background() return self.tpl_op() if __name__ == '__main__': image_path1 = "背景圖路徑" image_path2 = "小圖路徑" distance_px = "像素距離" main = ComputeDistance(image_path1, image_path2, distance_px) main.run()
上面代碼可以返回小圖到凹點的距離,現在我們可以看一下灰度處理中的圖片樣子:
得到距離後還要對這個距離數字進行處理一下,要讓它拆分成若幹個小數,這麼做的目的是在拖動的時候不能一下拖動到終點,
要模仿人類的手速緩緩向前行駛,不然很明顯是機器在操控。
比如到終點的距離為100,那麼要把它轉為 [8, 6, 11, 10, 3, 6, 3, -2, 4, 0, 15, 1, 9, 6, -2, 4, 1, -2, 15, 6, -2] 類似的,列表中的數加起來正好為100.
最簡單的轉換:
def handle_distance(distance): """將直線距離轉為緩慢的軌跡""" import random slow_distance = [] while sum(slow_distance) <= distance: slow_distance.append(random.randint(-2, 15)) if sum(slow_distance) != distance: slow_distance.append(distance - sum(slow_distance)) return slow_distance
有瞭到終點的距離,接下來就開始拖動吧:
import time from random import randint from selenium.webdriver.common.action_chains import ActionChains def move_slider(website, slider, track, **kwargs): """將滑塊移動到終點位置 :param website: selenium頁面對象 :param slider: selenium頁面中滑塊元素對象 :param track: 到終點所需的距離 """ name = kwargs.get('name', '滑塊') try: if track[0] > 200: return track[0] # 點擊滑塊元素並拖拽 ActionChains(website).click_and_hold(slider).perform() time.sleep(0.15) for i in track: # 隨機上下浮動鼠標 ActionChains(website).move_by_offset(xoffset=i, yoffset=randint(-2, 2)).perform() # 釋放元素 time.sleep(1) ActionChains(website).release(slider).perform() time.sleep(1) # 隨機拿開鼠標 ActionChains(website).move_by_offset(xoffset=randint(200, 300), yoffset=randint(200, 300)).perform() print(f'[網頁] 拖拽 {name}') return True except Exception as e: print(f'[網頁] 拖拽 {name} 失敗 {e}')
教程結束,讓我們結合上面代碼做一個案例吧。
訪問今日頭條某博主的主頁,直接打開主頁的鏈接會出現驗證碼。
下面代碼 使用pip安裝好相關依賴庫後可直接運行:
調用ComputeDistance類時,參數 show_img=True 可以在拖動驗證碼前進行展示背景圖識別終點後的區域在哪裡, 如:
distance_obj = ComputeDistance(background_path, small_path, px, show_img=True)
OK,下面為案例代碼:
import os import time import requests import cv2 import numpy from random import randint from selenium import webdriver from selenium.webdriver.common.action_chains import ActionChains def show_image(img_array, name='img', resize_flag=False): """展示圖片""" maxHeight = 540 maxWidth = 960 scaleX = maxWidth / img_array.shape[1] scaleY = maxHeight / img_array.shape[0] scale = min(scaleX, scaleY) if resize_flag and scale < 1: img_array = cv2.resize(img_array, (0, 0), fx=scale, fy=scale) cv2.imshow(name, img_array) cv2.waitKey(0) cv2.destroyWindow(name) def make_threshold(img): """全局閾值 將圖片二值化,去除噪點,讓其黑白分明""" x = numpy.ones(img.shape, numpy.uint8) * 255 y = img - x result, thresh = cv2.threshold(y, 127, 255, cv2.THRESH_BINARY_INV) # 將二值化後的結果返回 return thresh def move_slider(website, slider, track, **kwargs): """將滑塊移動到終點位置 :param website: selenium頁面對象 :param slider: selenium頁面中滑塊元素對象 :param track: 到終點所需的距離 """ name = kwargs.get('name', '滑塊') try: if track[0] > 200: return track[0] # 點擊滑塊元素並拖拽 ActionChains(website).click_and_hold(slider).perform() time.sleep(0.15) for i in track: # 隨機上下浮動鼠標 ActionChains(website).move_by_offset(xoffset=i, yoffset=randint(-2, 2)).perform() # 釋放元素 time.sleep(1) ActionChains(website).release(slider).perform() time.sleep(1) # 隨機拿開鼠標 ActionChains(website).move_by_offset(xoffset=randint(200, 300), yoffset=randint(200, 300)).perform() print(f'[網頁] 拖拽 {name}') return True except Exception as e: print(f'[網頁] 拖拽 {name} 失敗 {e}') class ComputeDistance: """獲取需要滑動的距離 將驗證碼背景大圖和需要滑動的小圖進行處理,先在大圖中找到相似的小圖位置,再獲取對應的像素偏移量""" def __init__(self, Background_path: str, image_to_move: str, offset_top_px: int, show_img=False): """ :param Background_path: 驗證碼背景大圖 :param image_to_move: 需要滑動的小圖 :param offset_top_px: 小圖距離在大圖上的頂部邊距(像素偏移量) :param show_img: 是否展示圖片 """ self.Background_img = cv2.imread(Background_path) self.offset_px = offset_top_px self.show_img = show_img small_img_data = cv2.imread(image_to_move, cv2.IMREAD_UNCHANGED) # 得到一個改變維度為50的乘以值 scaleX = 50 / small_img_data.shape[1] # 使用最近鄰插值法縮放,讓xy乘以scaleX,得到縮放後shape為50x50的圖片 self.tpl_img = cv2.resize(small_img_data, (0, 0), fx=scaleX, fy=scaleX) self.Background_cutting = None def show(self, img): if self.show_img: show_image(img) def tpl_op(self): # 將小圖轉換為灰色 tpl_gray = cv2.cvtColor(self.tpl_img, cv2.COLOR_BGR2GRAY) h, w = tpl_gray.shape # 將背景圖轉換為灰色 # Background_gray = cv2.cvtColor(self.Background_img, cv2.COLOR_BGR2GRAY) Background_gray = cv2.cvtColor(self.Background_cutting, cv2.COLOR_BGR2GRAY) # 得到二值化後的小圖 threshold_img = make_threshold(tpl_gray) # 將小圖與大圖進行模板匹配,找到所對應的位置 result = cv2.matchTemplate(Background_gray, threshold_img, cv2.TM_CCOEFF_NORMED) min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(result) # 左上角位置 top_left = (max_loc[0] - 5, max_loc[1] + self.offset_px) # 右下角位置 bottom_right = (top_left[0] + w, top_left[1] + h) # 在源顏色大圖中畫出小圖需要移動到的終點位置 """rectangle(圖片源數據, 左上角, 右下角, 顏色, 畫筆厚度)""" cv2.rectangle(self.Background_img, top_left, bottom_right, (0, 0, 255), 2) if self.show_img: show_image(self.Background_img) return top_left def cutting_background(self): """切割圖片的上下邊框""" height = self.tpl_img.shape[0] # 將大圖中上下多餘部分去除,如: Background_img[40:110, :] self.Background_cutting = self.Background_img[self.offset_px - 10: self.offset_px + height + 10, :] def run(self): # 如果小圖的長度與大圖的長度一致則不用將大圖進行切割,可以將self.cutting_background()註釋掉 self.cutting_background() return self.tpl_op() class TodayNews(object): def __init__(self): self.url = "https://www.toutiao.com/c/user/token/" \ "MS4wLjABAAAA4EKNlqVeNTTuEdWn0VytNS8cdODKTsNNwLTxOnigzZtclro2Kylvway5mTyTUKvz/" self.process_folder = os.path.join(os.path.expanduser('~'), "Desktop", "today_news") self.background_path = os.path.join(self.process_folder, "background.png") self.small_path = os.path.join(self.process_folder, "small.png") self.small_px = None self.xpath = {} self.browser = None def check_file_exist(self): """檢查流程目錄是否存在""" if not os.path.isdir(self.process_folder): os.mkdir(self.process_folder) def start_browser(self): """啟動瀏覽器""" self.browser = webdriver.Chrome() self.browser.maximize_window() def close_browser(self): self.browser.quit() def wait_element_loaded(self, xpath: str, timeout=10, close_browser=True): """等待頁面元素加載完成 :param xpath: xpath表達式 :param timeout: 最長等待超時時間 :param close_browser: 元素等待超時後是否關閉瀏覽器 :return: Boolean """ now_time = int(time.time()) while int(time.time()) - now_time < timeout: # noinspection PyBroadException try: element = self.browser.find_element_by_xpath(xpath) if element: return True time.sleep(1) except Exception: pass else: if close_browser: self.close_browser() # print("查找頁面元素失敗,如果不存在網絡問題請嘗試修改xpath表達式") return False def add_page_element(self): self.xpath['background_img'] = '//div[@role="dialog"]/div[2]/img[1]' self.xpath['small_img'] = '//div[@role="dialog"]/div[2]/img[2]' self.xpath['slider_button'] = '//div[@id="secsdk-captcha-drag-wrapper"]/div[2]' def process_main(self): """處理頁面內容""" self.browser.get(self.url) for _ in range(10): if self.wait_element_loaded(self.xpath['background_img'], timeout=5, close_browser=False): time.sleep(1) # 截圖 self.browser.find_element_by_xpath(self.xpath['background_img']).screenshot(self.background_path) small_img = self.browser.find_element_by_xpath(self.xpath['small_img']) # 獲取小圖片的URL鏈接 small_url = small_img.get_attribute("src") # 獲取小圖片距離背景圖頂部的像素距離 self.small_px = small_img.value_of_css_property("top").replace("px", "").split(".")[0] response = requests.get(small_url) if response.ok: with open(self.small_path, "wb") as file: file.write(response.content) time.sleep(1) # 如果沒滑動成功則刷新頁面重試 if not self.process_slider(): self.browser.refresh() continue else: break @staticmethod def handle_distance(distance): """將直線距離轉為緩慢的軌跡""" import random slow_distance = [] while sum(slow_distance) <= distance: slow_distance.append(random.randint(-2, 15)) if sum(slow_distance) != distance: slow_distance.append(distance - sum(slow_distance)) return slow_distance def process_slider(self): """處理滑塊驗證碼""" distance_obj = ComputeDistance(self.background_path, self.small_path, int(self.small_px), show_img=False) # 獲取移動所需的距離 distance = distance_obj.run() track = self.handle_distance(distance[0]) track.append(-2) slider_element = self.browser.find_element_by_xpath(self.xpath['slider_button']) move_slider(self.browser, slider_element, track) time.sleep(2) # 如果滑動完成則返回True if not self.wait_element_loaded(self.xpath['slider_button'], timeout=2, close_browser=False): return True else: return False def run(self): self.check_file_exist() self.start_browser() self.add_page_element() self.process_main() # self.close_browser() if __name__ == '__main__': main = TodayNews() main.run()
到此這篇關於OpenCV結合selenium實現滑塊驗證碼的文章就介紹到這瞭,更多相關OpenCV selenium滑塊驗證碼內容請搜索WalkonNet以前的文章或繼續瀏覽下面的相關文章希望大傢以後多多支持WalkonNet!
推薦閱讀:
- python自動化操作之動態驗證碼、滑動驗證碼的降噪和識別
- python爬蟲之利用selenium+opencv識別滑動驗證並模擬登陸知乎功能
- python+opencv+selenium自動化登錄郵箱並解決滑動驗證的問題
- Python Selenium破解滑塊驗證碼最新版(GEETEST95%以上通過率)
- python+selenium小米商城紅米K40手機自動搶購的示例代碼