TensorFlow教程Softmax邏輯回歸識別手寫數字MNIST數據集
基於MNIST數據集的邏輯回歸模型做十分類任務
沒有隱含層的Softmax Regression隻能直接從圖像的像素點推斷是哪個數字,而沒有特征抽象的過程。多層神經網絡依靠隱含層,則可以組合出高階特征,比如橫線、豎線、圓圈等,之後可以將這些高階特征或者說組件再組合成數字,就能實現精準的匹配和分類。
import tensorflow as tf import numpy as np import input_data print('Download and Extract MNIST dataset') mnist = input_data.read_data_sets('data/', one_hot=True) # one_hot=True意思是編碼格式為01編碼 print("tpye of 'mnist' is %s" % (type(mnist))) print("number of train data is %d" % (mnist.train.num_examples)) print("number of test data is %d" % (mnist.test.num_examples)) trainimg = mnist.train.images trainlabel = mnist.train.labels testimg = mnist.test.images testlabel = mnist.test.labels print("MNIST loaded") """ print("type of 'trainimg' is %s" % (type(trainimg))) print("type of 'trainlabel' is %s" % (type(trainlabel))) print("type of 'testimg' is %s" % (type(testimg))) print("type of 'testlabel' is %s" % (type(testlabel))) print("------------------------------------------------") print("shape of 'trainimg' is %s" % (trainimg.shape,)) print("shape of 'trainlabel' is %s" % (trainlabel.shape,)) print("shape of 'testimg' is %s" % (testimg.shape,)) print("shape of 'testlabel' is %s" % (testlabel.shape,)) """ x = tf.placeholder(tf.float32, [None, 784]) y = tf.placeholder(tf.float32, [None, 10]) # None is for infinite w = tf.Variable(tf.zeros([784, 10])) # 為瞭方便直接用0初始化,可以高斯初始化 b = tf.Variable(tf.zeros([10])) # 10分類的任務,10種label,所以隻需要初始化10個b pred = tf.nn.softmax(tf.matmul(x, w) + b) # 前向傳播的預測值 cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(pred), reduction_indices=[1])) # 交叉熵損失函數 optm = tf.train.GradientDescentOptimizer(0.01).minimize(cost) corr = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1)) # tf.equal()對比預測值的索引和真實label的索引是否一樣,一樣返回True,不一樣返回False accr = tf.reduce_mean(tf.cast(corr, tf.float32)) init = tf.global_variables_initializer() # 全局參數初始化器 training_epochs = 100 # 所有樣本迭代100次 batch_size = 100 # 每進行一次迭代選擇100個樣本 display_step = 5 # SESSION sess = tf.Session() # 定義一個Session sess.run(init) # 在sess裡run一下初始化操作 # MINI-BATCH LEARNING for epoch in range(training_epochs): # 每一個epoch進行循環 avg_cost = 0. # 剛開始損失值定義為0 num_batch = int(mnist.train.num_examples/batch_size) for i in range(num_batch): # 每一個batch進行選擇 batch_xs, batch_ys = mnist.train.next_batch(batch_size) # 通過next_batch()就可以一個一個batch的拿數據, sess.run(optm, feed_dict={x: batch_xs, y: batch_ys}) # run一下用梯度下降進行求解,通過placeholder把x,y傳進來 avg_cost += sess.run(cost, feed_dict={x: batch_xs, y:batch_ys})/num_batch # DISPLAY if epoch % display_step == 0: # display_step之前定義為5,這裡每5個epoch打印一下 train_acc = sess.run(accr, feed_dict={x: batch_xs, y:batch_ys}) test_acc = sess.run(accr, feed_dict={x: mnist.test.images, y: mnist.test.labels}) print("Epoch: %03d/%03d cost: %.9f TRAIN ACCURACY: %.3f TEST ACCURACY: %.3f" % (epoch, training_epochs, avg_cost, train_acc, test_acc)) print("DONE")
迭代100次跑一下模型,最終,在測試集上可以達到92.2%的準確率,雖然還不錯,但是還達不到實用的程度。手寫數字的識別的主要應用場景是識別銀行支票,如果準確率不夠高,可能會引起嚴重的後果。
Epoch: 095/100 loss: 0.283259882 train_acc: 0.940 test_acc: 0.922
插一些知識點,關於tensorflow中一些函數的用法
sess = tf.InteractiveSession() arr = np.array([[31, 23, 4, 24, 27, 34], [18, 3, 25, 0, 6, 35], [28, 14, 33, 22, 30, 8], [13, 30, 21, 19, 7, 9], [16, 1, 26, 32, 2, 29], [17, 12, 5, 11, 10, 15]])
在tensorflow中打印要用.eval() tf.rank(arr).eval() # 打印矩陣arr的維度 tf.shape(arr).eval() # 打印矩陣arr的大小 tf.argmax(arr, 0).eval() # 打印最大值的索引,參數0為按列求索引,1為按行求索引
以上就是TensorFlow教程Softmax邏輯回歸識別手寫數字MNIST數據集的詳細內容,更多關於Softmax邏輯回歸MNIST數據集手寫識別的資料請關註WalkonNet其它相關文章!
推薦閱讀:
- TensorFlow神經網絡創建多層感知機MNIST數據集
- TensorFlow卷積神經網絡MNIST數據集實現示例
- TensorFlow卷積神經網絡AlexNet實現示例詳解
- 深度學習TextRNN的tensorflow1.14實現示例
- Python產生batch數據的操作