Python人工智能實戰之以圖搜圖的實現
前言
基於vgg網絡和Keras深度學習框架的以圖搜圖功能實現。
一、實驗要求
給出一張圖像後,在整個數據集中(至少100個樣本)找到與這張圖像相似的圖像(至少5張),並把圖像有順序的展示。
二、環境配置
解釋器:python3.10
編譯器:Pycharm
必用配置包:
numpy、h5py、matplotlib、keras、pillow
三、代碼文件
1、vgg.py
# -*- coding: utf-8 -*- import numpy as np from numpy import linalg as LA from keras.applications.vgg16 import VGG16 from keras.preprocessing import image from keras.applications.vgg16 import preprocess_input as preprocess_input_vgg class VGGNet: def __init__(self): self.input_shape = (224, 224, 3) self.weight = 'imagenet' self.pooling = 'max' self.model_vgg = VGG16(weights = self.weight, input_shape = (self.input_shape[0], self.input_shape[1], self.input_shape[2]), pooling = self.pooling, include_top = False) self.model_vgg.predict(np.zeros((1, 224, 224 , 3))) #提取vgg16最後一層卷積特征 def vgg_extract_feat(self, img_path): img = image.load_img(img_path, target_size=(self.input_shape[0], self.input_shape[1])) img = image.img_to_array(img) img = np.expand_dims(img, axis=0) img = preprocess_input_vgg(img) feat = self.model_vgg.predict(img) # print(feat.shape) norm_feat = feat[0]/LA.norm(feat[0]) return norm_feat
2、index.py
# -*- coding: utf-8 -*- import os import h5py import numpy as np import argparse from vgg import VGGNet def get_imlist(path): return [os.path.join(path, f) for f in os.listdir(path) if f.endswith('.jpg')] if __name__ == "__main__": database = r'D:\pythonProject5\flower_roses' index = 'vgg_featureCNN.h5' img_list = get_imlist(database) print(" feature extraction starts") feats = [] names = [] model = VGGNet() for i, img_path in enumerate(img_list): norm_feat = model.vgg_extract_feat(img_path) # 修改此處改變提取特征的網絡 img_name = os.path.split(img_path)[1] feats.append(norm_feat) names.append(img_name) print("extracting feature from image No. %d , %d images in total" % ((i + 1), len(img_list))) feats = np.array(feats) output = index print(" writing feature extraction results ...") h5f = h5py.File(output, 'w') h5f.create_dataset('dataset_1', data=feats) # h5f.create_dataset('dataset_2', data = names) h5f.create_dataset('dataset_2', data=np.string_(names)) h5f.close()
3、test.py
# -*- coding: utf-8 -*- from vgg import VGGNet import numpy as np import h5py import matplotlib.pyplot as plt import matplotlib.image as mpimg import argparse query = r'D:\pythonProject5\rose\red_rose.jpg' index = 'vgg_featureCNN.h5' result = r'D:\pythonProject5\flower_roses' # read in indexed images' feature vectors and corresponding image names h5f = h5py.File(index, 'r') # feats = h5f['dataset_1'][:] feats = h5f['dataset_1'][:] print(feats) imgNames = h5f['dataset_2'][:] print(imgNames) h5f.close() print(" searching starts") queryImg = mpimg.imread(query) plt.title("Query Image") plt.imshow(queryImg) plt.show() # init VGGNet16 model model = VGGNet() # extract query image's feature, compute simlarity score and sort queryVec = model.vgg_extract_feat(query) # 修改此處改變提取特征的網絡 print(queryVec.shape) print(feats.shape) scores = np.dot(queryVec, feats.T) rank_ID = np.argsort(scores)[::-1] rank_score = scores[rank_ID] # print (rank_ID) print(rank_score) # number of top retrieved images to show maxres = 6 # 檢索出6張相似度最高的圖片 imlist = [] for i, index in enumerate(rank_ID[0:maxres]): imlist.append(imgNames[index]) print(type(imgNames[index])) print("image names: " + str(imgNames[index]) + " scores: %f" % rank_score[i]) print("top %d images in order are: " % maxres, imlist) # show top #maxres retrieved result one by one for i, im in enumerate(imlist): image = mpimg.imread(result + "/" + str(im, 'utf-8')) plt.title("search output %d" % (i + 1)) plt.imshow(np.uint8(image)) f = plt.gcf() # 獲取當前圖像 f.savefig(r'D:\pythonProject5\result\{}.jpg'.format(i),dpi=100) #f.clear() # 釋放內存 plt.show()
四、演示
1、項目文件夾
數據集
結果(運行前)
原圖
2、相似度排序輸出
3、保存結果
五、尾聲
分享一個實用又簡單的爬蟲代碼,搜圖頂呱呱!
import os import time import requests import re def imgdata_set(save_path,word,epoch): q=0 #停止爬取圖片條件 a=0 #圖片名稱 while(True): time.sleep(1) url="https://image.baidu.com/search/flip?tn=baiduimage&ie=utf-8&word={}&pn={}&ct=&ic=0&lm=-1&width=0&height=0".format(word,q) #word=需要搜索的名字 headers={ 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/88.0.4324.96 Safari/537.36 Edg/88.0.705.56' } response=requests.get(url,headers=headers) # print(response.request.headers) html=response.text # print(html) urls=re.findall('"objURL":"(.*?)"',html) # print(urls) for url in urls: print(a) #圖片的名字 response = requests.get(url, headers=headers) image=response.content with open(os.path.join(save_path,"{}.jpg".format(a)),'wb') as f: f.write(image) a=a+1 q=q+20 if (q/20)>=int(epoch): break if __name__=="__main__": save_path = input('你想保存的路徑:') word = input('你想要下載什麼圖片?請輸入:') epoch = input('你想要下載幾輪圖片?請輸入(一輪為60張左右圖片):') # 需要迭代幾次圖片 imgdata_set(save_path, word, epoch)
到此這篇關於Python人工智能實戰之以圖搜圖的實現的文章就介紹到這瞭,更多相關Python以圖搜圖內容請搜索WalkonNet以前的文章或繼續瀏覽下面的相關文章希望大傢以後多多支持WalkonNet!
推薦閱讀:
- 關於keras中的Reshape用法
- python做圖片搜索引擎並保存到本地詳情
- python pytorch圖像識別基礎介紹
- Keras 如何修改圖片通道的順序
- python PaddleSpeech實現嬰兒啼哭識別