基於Matlab實現嗅覺優化算法的示例代碼
1.概述
嗅覺劑優化是一種新穎的優化算法,旨在模仿氣味分子源尾隨的藥劑的智能行為。該概念分為三個階段(嗅探,尾隨和隨機)是獨特且易於實現的。此上傳包含 SAO 在 37 個 CEC 基準測試函數上的實現。
2.37 個 CEC 基準測試函數代碼
function [lb,ub,dim,fobj] = Select_Function(F) switch F case 'F1' %Admijan fobj = @F1; lb=[-1 -1]; ub=[2 1]; dim=2; case 'F2' %Beale fobj = @F2; dim=2; lb=-4.5*ones(1,dim); ub=4.5*ones(1,dim); case 'F3' %Bird fobj = @F3; dim=2; lb=-2*pi*ones(1,dim); ub=2*pi*ones(1,dim); case 'F4' %Bohachevsky fobj = @F4; dim=2; lb=-100*ones(1,dim); ub=100*ones(1,dim); case 'F5' % Booth fobj = @F5; dim=2; lb=-10*ones(1,dim); ub=10*ones(1,dim); case 'F6' %Branin RCOS1 fobj = @F6; lb=[-5,0]; ub=[10, 15]; dim=2; case 'F7' %Branin RCOS2 fobj = @F7; dim=2; lb=-5*ones(1,dim); ub=15*ones(1,dim); case 'F8' %Brent fobj = @F8; dim=2; lb=-10*ones(1,dim); ub=10*ones(1,dim); case 'F9' %Bukin F2 fobj = @F9; dim=2; lb=[-15 -3]; ub=[-5 3]; case 'F10' %six-hump fobj = @F10; dim=2; lb=-5*ones(1,dim); ub=5*ones(1,dim); case 'F11' %Chichinadze fobj = @F11; dim=2; lb=-30*ones(1,dim); ub=30*ones(1,dim); case 'F12' %Deckkers-Aarts fobj = @F12; dim =2; lb=-20*ones(1,dim); ub=20*ones(1,dim); case 'F13' %Easom dim=2; fobj=@F13; lb=-10*ones(1,dim); ub=10*ones(1,dim); case 'F14' %Matyas fobj = @F14; dim=2; lb=-10*ones(1,dim); ub=10*ones(1,dim); case 'F15' %McComick fobj = @F15; dim=2; lb=-10*ones(1,dim); ub=10*ones(1,dim); case 'F16' %Michalewicz2 fobj = @F16; dim=2; lb=0*ones(1,dim); ub=pi*ones(1,dim); case 'F17' %Quadratic fobj = @F17; dim=2; lb=-10*ones(1,dim); ub=10*ones(1,dim); case 'F18' %Schaffer dim=2; fobj = @F18; lb=-100*ones(1,dim); ub=100*ones(1,dim); case 'F19' %StyblinskiTang fobj = @F19; dim=2; lb=-5*ones(1,dim); ub=5*ones(1,dim); case 'F20' %Box-Betts fobj = @F20; dim=3; lb=[0.9 9 0.9]; ub=[1.2 11.2 1.2]; case 'F21' %Colville fobj = @F21; dim=4; lb=-1*ones(1,dim); ub=1*ones(1,dim); case 'F22' %Csendes fobj = @F22; dim=4; lb=-1*ones(1,dim); ub=1*ones(1,dim); case 'F23' % Michalewicz 5 fobj = @F23; dim=5; lb=0*ones(1,dim); ub=pi*ones(1,dim); case 'F24' %Miele Cantrell dim=4; fobj = @F24; lb=-1*ones(1,dim); ub=1*ones(1,dim); case 'F25' % Step fobj = @F25; dim=5; lb=-100*ones(1,dim); ub=100*ones(1,dim); case 'F26' %Michalewicz fobj = @F26; dim=10; lb=0*ones(1,dim); ub=pi*ones(1,dim); case 'F27' %Shubert fobj = @F27; dim=5; lb=-10*ones(1,dim); ub=10*ones(1,dim); case 'F28' %Ackley dim=30; fobj = @F28; lb=-32*ones(1,dim); ub=32*ones(1,dim); case 'F29' %Brown fobj = @F29; dim=30; lb=-1*ones(1,dim); ub=4*ones(1,dim); case 'F30' %Ellipsoid dim=2; fobj = @F30; lb=-5.12*ones(1,dim); ub=5.12*ones(1,dim); case 'F31' % Grienwank fobj = @F31; dim=30; lb=-100*ones(1,dim); ub=100*ones(1,dim); case 'F32' %Mishra fobj = @F32; dim=30; lb=0*ones(1,dim); ub=1*ones(1,dim); case 'F33' %Quartic dim=30; fobj = @F33; lb=-1.28*ones(1,dim); ub=1.28*ones(1,dim); case 'F34' %Rastrigin fobj = @F34; dim=30; lb=-5.12*ones(1,dim); ub=5.12*ones(1,dim); case 'F35' %Rosenbrock fobj = @F35; dim=30; lb=-30*ones(1,dim); ub=30*ones(1,dim); case 'F36' % Salomon fobj = @F36; dim=30; lb=-100*ones(1,dim); ub=100*ones(1,dim); case 'F37' %Sphere fobj = @F37; dim=30; lb=-100*ones(1,dim); ub=100*ones(1,dim); end end function o=F1(x) % Adjiman o=(cos(x(:,1)).*sin(x(:,2))-x(:,1)./(x(:,2).^2+1)); end function o=F2(x) % Beale o=(1.5-x(:,1)+(x(:,1).*(x(:,2)))).^2+(2.25-x(:,1)+(x(:,1).*(x(:,2)).^2)).^2+... (2.625-x(:,1)+(x(:,1).*(x(:,2)).^3)).^2; end function o=F3(x) % Bird o=sin(x(:,2)).*(exp(1-cos(x(:,1))).^2)+cos(x(:,1)).*(exp(1-sin(x(:,2))).^2)... +(x(:,1)+(x(:,2))).^2; end function o=F4(x) % Bohachevsky W=0; [a,dim]=size(x); for i=1:dim-1 W=W+x(:,i).^2+2.*x(:,i+1).^2-0.3.*cos(3.*pi.*x(:,i+1))-0.4.*cos(4.*pi.*(x(:,i+1)))+0.7; end o=W; end function o=F5(x) %Booth o=(x(:,2)-(5.1*x(:,1).^2/(4*pi*2))+(5*x(:,1)/pi)-6).^2+... 10*(1-1/(8*pi)).*cos(x(:,1))+10; end function o=F6(x) % Branin RCOS 1 o=(x(:,2)-(5.1*x(:,1).^2/(4*pi*2))+(5*x(:,1)/pi)-6).^2+... 10*(1-1/(8*pi)).*cos(x(:,1))+10; end function o=F7(x) % Branin RCOS 2 a=1; b=5.1/(4*pi^2); c=5/pi; d=6; e=10; g=1/(8*pi); f1=a*(x(:,2)-b*x(:,1).^2+c*x(:,1)-d).^2; f2=e*(1-g)*cos(x(:,1)).*cos(x(:,2)); f3=log(x(:,1).^2+x(:,2)+1); o=-1/(f1+f2+f3+e); end function o=F8(x) %Brent o=(x(:,1)+10).^2+(x(:,1)+10).^2+exp(-x(:,1).^2-x(:,2).^2); end function o=F9(x) %Bukin F2 o=(abs(x(:,1)-0.01.*x(:,2).^2))+0.01.*abs(x(:,2)+10); end function o=F10(x) %Camel Six Hump o=(4-2.1*x(:,1).^2+(x(:,1).^4)/3).*x(:,1).^2+x(:,1).*x(:,2)+... (4*x(:,2).^2-4).*x(:,2).^2; end function o=F11(x) %Chichinadze o=x(:,1).^2-12*x(:,1)+11+10*cos(pi*x(:,1)/2)+8*sin(5*pi*x(:,1)/2)-... ((1/5)^0.5)*exp(-0.5*(x(:,2)-0.5).^2); end function o=F12(x) % Deckkers-Aarts o=10^5*x(:,1).^2+x(:,2).^2-(x(:,1).^2+x(:,2).^2).^2+... 10^(-5)*(x(:,1).^2+x(:,2).^2).^4; end function o = F13(x) % Easom o=-cos(x(:,1)).*cos(x(:,2)).*exp(-(x(:,1)-pi).^2-(x(:,2)-pi).^2); end function o=F14(x) % Evaluate Matyas o=0.26*(x(:,1).^2+x(:,2).^2)-0.48*x(:,1).*x(:,2); end function o=F15(x) % McCormick o=mccormick(x);% end function o=F16(x) % Michalewicz2 [~,d]=size(x); W=0; for i=1:d W=sin(x(:,1)).*sin(i*x(:,i).^2/pi).^2*d; end o=-W; end function o=F17(x) % Quadratic o=-3803.84-138.08*x(:,1)-232.92*x(:,2)+128.08*x(:,1).^2+203.64*x(:,2).^2+182.25*x(:,1).*x(:,2); end function o=F18(x) % Evaluate Schaffer [~,d]=size(x); w=0; for i=1:d-1 w=w+((x(i).^2+x(i+1).^2).^.5).*(sin(50.*(x(i).^2+x(i+1).^2).^0.1)).^2; end o=w; end function o=F19(x) % Styblinki's Tang [~,d]=size(x); W=0; for i=1:d W=W+(x(:,i).^4-16.*x(:,i).^2+5.*x(:,i)); end o=W.*0.5; end function o=F20(x) % Box-Betts [~,d]=size(x); W=0; for i=1:d g=exp(-0.1.*(i+1)).*x(:,1)-exp(-0.1.*(i+1)).*x(:,2)-((exp(-0.1.*(i+1)))-exp(-(i+1)).*x(:,3)); W=W+g.^2; end o=W; end function o=F21(x) % Colville o=100*(x(:,1)-x(:,2).^2).^2+(1-x(:,1)).^2+90*(x(:,4)-x(:,3).^2).^2+... (1-x(:,3)).^2+10.1*((x(:,2)-1).^2+(x(:,4)-1).^2)+... 19.8*(x(:,2)-1).*(x(:,4)-1); end function o=F22(x) % Csendes [~,d]=size(x); aa=0; for i=1:d aa=aa+x(:,i).^6.*(2+sin(1/x(:,i))); end o=aa; end function o=F23(x) % Michalewicz 5 [~,d]=size(x); W=0; for i=1:d W=sin(x(:,1)).*sin(i*x(:,i).^2/pi).^2*d; end o=-W; end function o=F24(x) %Miele Cantrell o=(exp(-x(:,1))-x(:,2)).^4+100*(x(:,2)-x(:,3)).^6+... (tan(x(:,3)-x(:,4))).^4+x(:,1).^8; end function o=F25(x) % Evaluate Step [~,d]=size(x); W=0; for i=1:d W=W+(floor(x(:,i)+0.5)).^2; end o=W; end function o=F26(x) % Evaluate Michalewicz 10 [~,d]=size(x); W=0; for i=1:d W=sin(x(:,1)).*sin(i*x(:,i).^2/pi).^2*d; end o=-W; end function o=F27(x) % shubert [~,d]=size(x); s1=0; s2=0; for i = 1:d s1 = s1+i*cos((i+1)*x(1)+i); s2 = s2+i*cos((i+1)*x(2)+i); end o = s1*s2; end % F28--Ackley function o = F28(x) dim=size(x,2); o=-20*exp(-.2*sqrt(sum(x.^2)/dim))-exp(sum(cos(2*pi.*x))/dim)+20+exp(1); end function o=F29(x) [~,d]=size(x); % Brown a=0; for i=1:d-1 a=(x(:,i).^2).^(x(:,i+1)+1)+(x(:,i+1).^2).^(x(:,i).^2+1); end o=a; end function o=F30(x) % Ellipsoid [~,d]=size(x); W=0; for i=1:d W=W+i.*x(:,1).^2; end o=W; end %Grienwank function o=F31(x) o=griewank(x); end function o=F32(x) % Mishra [~,d]=size(x); a=0; for i=1:d-1 a=a+x(:,i); end aa=d-a; b=0; for j=1:d-1 b=b+x(:,j); end W=abs((1+d-b).^aa); o=W; end % --Quartic function o = F33(x) dim=size(x,2); o=sum([1:dim].*(x.^4))+rand; end %Rastrigin function o=F34(x) o=rastrigin(x); end % Rosenbrock function o = F35(x) dim=size(x,2); o=sum(100*(x(2:dim)-(x(1:dim-1).^2)).^2+(x(1:dim-1)-1).^2); end function o=F36(x) % salomon x2 = x.^2; sumx2 = sum(x2, 2); sqrtsx2 = sqrt(sumx2); o = 1 - cos(2 .* pi .* sqrtsx2) + (0.1 * sqrtsx2); end function o = F37(x) %Sphere o=sum(x.^2); end function o=Ufun(x,a,k,m) o=k.*((x-a).^m).*(x>a)+k.*((-x-a).^m).*(x<(-a)); end
3.F1 Matlab代碼仿真
到此這篇關於基於Matlab實現嗅覺優化算法的示例代碼的文章就介紹到這瞭,更多相關Matlab嗅覺優化算法內容請搜索WalkonNet以前的文章或繼續瀏覽下面的相關文章希望大傢以後多多支持WalkonNet!
推薦閱讀:
- JavaScript編程通過Matlab質心算法定位學習
- 解決python調用matlab時的一些常見問題
- python基礎之文件操作
- python matlab庫簡單用法講解
- 詳解python讀取matlab數據(.mat文件)