python連接clickhouse數據庫的兩種方式小結
python連接clickhouse數據庫
在Python中獲取系統信息的一個好辦法是使用psutil這個第三方模塊。
顧名思義,psutil = process and system utilities,它不僅可以通過一兩行代碼實現系統監控,還可以跨平臺使用。
主要針對clickhouse_driver的使用進行簡要介紹
第一步:
- 通過pip install clickhouse_driver 安裝 clickhouse_driver
第二步:
- 方法一:使用clickhouse_driver 包中的Client類,通過實例化一個客戶端進行對數據庫的增刪改查操作
from clickhouse_driver import Client from datetime import datetime import psutil host_name = '192.168.50.94' client = Client(host=host_name,database='default',user='default',password='自己設的密碼',send_receive_timeout=20,port=55666) now = datetime.now() time_stamp = now.strftime('%a %b %d %H:%M:%S CST %Y')# Tue Apr 06 15:32:55 CST 2021 <class 'str'> create_at = datetime.now().strftime('%Y-%m-%d %H:%M:%S') disk_io = psutil.disk_io_counters() net_io = psutil.net_io_counters() chart_name = ["磁盤IO","網絡IO"] metric_name1 = ["讀(數量)","寫(數量)", "讀(字節)", "寫(字節)", "讀(時間)", "寫(時間)"] metric_name2 = ["發送字節數","接收字節數","發送包數","接收包"] metric_value1 = [disk_io.read_count,disk_io.write_count,disk_io.read_bytes,disk_io.write_bytes,disk_io.read_time,disk_io.write_time] metric_value2 = [net_io.bytes_sent,net_io.bytes_recv,net_io.packets_sent,net_io.packets_recv] try: for i in chart_name: if i is "磁盤IO": for j in metric_name1: sql = "insert into clickhouse_host_metrics777(time_stamp,host_name, chart_name, metric_name,metric_value,create_at) " \ "values('%s','%s','%s','%s','%s','%s')" % \ (time_stamp, host_name, i, j, metric_value1[metric_name1.index(j)], create_at) res = client.execute(sql) elif i is "網絡IO": for j in metric_name2: sql = "insert into clickhouse_host_metrics777(time_stamp,host_name, chart_name, metric_name,metric_value,create_at) " \ "values('%s','%s','%s','%s','%s','%s')" % \ (time_stamp, host_name, i, j, metric_value2[metric_name2.index(j)], create_at) res = client.execute(sql) print("成功寫入數據") except Exception as e: print(str(e))
- 方法二:使用clickhouse_driver 包中的connect函數,通過實例化一個客戶端進行對數據庫的增刪改查操作
from datetime import datetime import psutil from clickhouse_driver import connect host_name = '192.168.50.94' #賬號:密碼@主機名:端口號/數據庫 conn = connect('clickhouse://default:自己設的密碼@'+host_name+':55666/default') cursor = conn.cursor() now = datetime.now() time_stamp = now.strftime('%a %b %d %H:%M:%S CST %Y')# Tue Apr 06 15:32:55 CST 2021 <class 'str'> create_at = datetime.now().strftime('%Y-%m-%d %H:%M:%S') disk_io = psutil.disk_io_counters() net_io = psutil.net_io_counters() chart_name = ["磁盤IO","網絡IO"] metric_name1 = ["讀(數量)","寫(數量)", "讀(字節)", "寫(字節)", "讀(時間)", "寫(時間)"] metric_name2 = ["發送字節數","接收字節數","發送包數","接收包"] metric_value1 = [disk_io.read_count,disk_io.write_count,disk_io.read_bytes,disk_io.write_bytes,disk_io.read_time,disk_io.write_time] metric_value2 = [net_io.bytes_sent,net_io.bytes_recv,net_io.packets_sent,net_io.packets_recv] try: for i in chart_name: if i is "磁盤IO": for j in metric_name1: sql = "insert into clickhouse_host_metrics777(time_stamp,host_name, chart_name, metric_name,metric_value,create_at) values('%s','%s','%s','%s','%s','%s')" % \ (time_stamp, host_name, i, j, metric_value1[metric_name1.index(j)], create_at) # res = client.execute(sql) res = cursor.execute(sql) elif i is "網絡IO": for j in metric_name2: sql = "insert into clickhouse_host_metrics777(time_stamp,host_name, chart_name, metric_name,metric_value,create_at) values('%s','%s','%s','%s','%s','%s')" % \ (time_stamp, host_name, i, j, metric_value2[metric_name2.index(j)], create_at) res = cursor.execute(sql) cursor.close() print("成功寫入數據") except Exception as e: print(str(e))
python將數據寫入clickhouse
from clickhouse_driver import Client # connect ClickHouse client = Client(host= ,port= ,user= ,database= , password=) # 得到table1中查詢的數據導入table2中(database2中應該事先建立對應的table2表) query_ck_sql = """ SELECT * FROM database1.table1 WHERE date = today() """ # 導入數據到臨時表 try: # 導入數據 client.execute("insert into {official_table_db}.{official_all_table_name} \ {query_ck_sql}".format( official_table_db = database2, official_table_name = table2, query_ck_sql = query_ck_sql) ,types_check = True) except Exception as e: print str(e)
以上為個人經驗,希望能給大傢一個參考,也希望大傢多多支持WalkonNet。
推薦閱讀:
- Python使用psutil庫對系統數據進行采集監控的方法
- Python 操作SQLite數據庫詳情
- 快速使用docker-compose部署clickhouse的教程
- Python基礎之操作MySQL數據庫
- Python全棧之學習MySQL(3)