Python實現自動駕駛訓練模型

一、安裝環境

gym是用於開發和比較強化學習算法的工具包,在python中安裝gym庫和其中子場景都較為簡便。

安裝gym:

pip install gym

安裝自動駕駛模塊,這裡使用Edouard Leurent發佈在github上的包highway-env:

pip install --user git+https://github.com/eleurent/highway-env

其中包含6個場景:

  • 高速公路——“highway-v0”
  • 匯入——“merge-v0”
  • 環島——“roundabout-v0”
  • 泊車——“parking-v0”
  • 十字路口——“intersection-v0”
  • 賽車道——“racetrack-v0”

二、配置環境

安裝好後即可在代碼中進行實驗(以高速公路場景為例):

import gym
import highway_env
%matplotlib inline
env = gym.make('highway-v0')
env.reset()
for _ in range(3):
    action = env.action_type.actions_indexes["IDLE"]
    obs, reward, done, info = env.step(action)
    env.render()

運行後會在模擬器中生成如下場景:

綠色為ego vehicle env類有很多參數可以配置,具體可以參考原文檔。

三、訓練模型

1、數據處理

(1)state

highway-env包中沒有定義傳感器,車輛所有的state (observations) 都從底層代碼讀取,節省瞭許多前期的工作量。根據文檔介紹,state (ovservations) 有三種輸出方式:Kinematics,Grayscale Image和Occupancy grid。

Kinematics

輸出V*F的矩陣,V代表需要觀測的車輛數量(包括ego vehicle本身),F代表需要統計的特征數量。例:

數據生成時會默認歸一化,取值范圍:[100, 100, 20, 20],也可以設置ego vehicle以外的車輛屬性是地圖的絕對坐標還是對ego vehicle的相對坐標。

在定義環境時需要對特征的參數進行設定:

config = \
    {
    "observation": 
         {
        "type": "Kinematics",
        #選取5輛車進行觀察(包括ego vehicle)
        "vehicles_count": 5,  
        #共7個特征
        "features": ["presence", "x", "y", "vx", "vy", "cos_h", "sin_h"], 
        "features_range": 
            {
            "x": [-100, 100],
            "y": [-100, 100],
            "vx": [-20, 20],
            "vy": [-20, 20]
            },
        "absolute": False,
        "order": "sorted"
        },
    "simulation_frequency": 8,  # [Hz]
    "policy_frequency": 2,  # [Hz]
    }

Grayscale Image

生成一張W*H的灰度圖像,W代表圖像寬度,H代表圖像高度

Occupancy grid

生成一個WHF的三維矩陣,用W*H的表格表示ego vehicle周圍的車輛情況,每個格子包含F個特征。

(2) action

highway-env包中的action分為連續和離散兩種。連續型action可以直接定義throttle和steering angle的值,離散型包含5個meta actions:

ACTIONS_ALL = {
        0: 'LANE_LEFT',
        1: 'IDLE',
        2: 'LANE_RIGHT',
        3: 'FASTER',
        4: 'SLOWER'
    }

(3) reward

highway-env包中除瞭泊車場景外都采用同一個reward function:

這個function隻能在其源碼中更改,在外層隻能調整權重。(泊車場景的reward function原文檔裡有,懶得打公式瞭……)

2、搭建模型

DQN網絡的結構和搭建過程已經在我另一篇文章中討論過,所以這裡不再詳細解釋。我采用第一種state表示方式——Kinematics進行示范。

由於state數據量較小(5輛車*7個特征),可以不考慮使用CNN,直接把二維數據的size[5,7]轉成[1,35]即可,模型的輸入就是35,輸出是離散action數量,共5個。

import torch
import torch.nn as nn
from torch.autograd import Variable
import torch.nn.functional as F
import torch.optim as optim
import torchvision.transforms as T
from torch import FloatTensor, LongTensor, ByteTensor
from collections import namedtuple
import random 
Tensor = FloatTensor
EPSILON = 0    # epsilon used for epsilon greedy approach
GAMMA = 0.9
TARGET_NETWORK_REPLACE_FREQ = 40       # How frequently target netowrk updates
MEMORY_CAPACITY = 100
BATCH_SIZE = 80
LR = 0.01         # learning rate
class DQNNet(nn.Module):
    def __init__(self):
        super(DQNNet,self).__init__()                  
        self.linear1 = nn.Linear(35,35)
        self.linear2 = nn.Linear(35,5)               
    def forward(self,s):
        s=torch.FloatTensor(s)        
        s = s.view(s.size(0),1,35)        
        s = self.linear1(s)
        s = self.linear2(s)
        return s           
class DQN(object):
    def __init__(self):
        self.net,self.target_net = DQNNet(),DQNNet()        
        self.learn_step_counter = 0      
        self.memory = []
        self.position = 0 
        self.capacity = MEMORY_CAPACITY       
        self.optimizer = torch.optim.Adam(self.net.parameters(), lr=LR)
        self.loss_func = nn.MSELoss()
    def choose_action(self,s,e):
        x=np.expand_dims(s, axis=0)
        if np.random.uniform() < 1-e:  
            actions_value = self.net.forward(x)            
            action = torch.max(actions_value,-1)[1].data.numpy()
            action = action.max()           
        else: 
            action = np.random.randint(0, 5)
        return action
    def push_memory(self, s, a, r, s_):
        if len(self.memory) < self.capacity:
            self.memory.append(None)
        self.memory[self.position] = Transition(torch.unsqueeze(torch.FloatTensor(s), 0),torch.unsqueeze(torch.FloatTensor(s_), 0),\
                                                torch.from_numpy(np.array([a])),torch.from_numpy(np.array([r],dtype='float32')))#
        self.position = (self.position + 1) % self.capacity
    def get_sample(self,batch_size):
        sample = random.sample(self.memory,batch_size)
        return sample
    def learn(self):
        if self.learn_step_counter % TARGET_NETWORK_REPLACE_FREQ == 0:
            self.target_net.load_state_dict(self.net.state_dict())
        self.learn_step_counter += 1
        transitions = self.get_sample(BATCH_SIZE)
        batch = Transition(*zip(*transitions))
        b_s = Variable(torch.cat(batch.state))
        b_s_ = Variable(torch.cat(batch.next_state))
        b_a = Variable(torch.cat(batch.action))
        b_r = Variable(torch.cat(batch.reward))    
        q_eval = self.net.forward(b_s).squeeze(1).gather(1,b_a.unsqueeze(1).to(torch.int64)) 
        q_next = self.target_net.forward(b_s_).detach() #
        q_target = b_r + GAMMA * q_next.squeeze(1).max(1)[0].view(BATCH_SIZE, 1).t()           
        loss = self.loss_func(q_eval, q_target.t())        
        self.optimizer.zero_grad() # reset the gradient to zero        
        loss.backward()
        self.optimizer.step() # execute back propagation for one step       
        return loss
Transition = namedtuple('Transition',('state', 'next_state','action', 'reward'))

3、運行結果

各個部分都完成之後就可以組合在一起訓練模型瞭,流程和用CARLA差不多,就不細說瞭。

初始化環境(DQN的類加進去就行瞭):

import gym
import highway_env
from matplotlib import pyplot as plt
import numpy as np
import time
config = \
    {
    "observation": 
         {
        "type": "Kinematics",
        "vehicles_count": 5,
        "features": ["presence", "x", "y", "vx", "vy", "cos_h", "sin_h"],
        "features_range": 
            {
            "x": [-100, 100],
            "y": [-100, 100],
            "vx": [-20, 20],
            "vy": [-20, 20]
            },
        "absolute": False,
        "order": "sorted"
        },
    "simulation_frequency": 8,  # [Hz]
    "policy_frequency": 2,  # [Hz]
    }
env = gym.make("highway-v0")
env.configure(config)

訓練模型:

dqn=DQN()
count=0
reward=[]
avg_reward=0
all_reward=[]
time_=[]
all_time=[]
collision_his=[]
all_collision=[]
while True:
    done = False    
    start_time=time.time()
    s = env.reset()
    while not done:
        e = np.exp(-count/300)  #隨機選擇action的概率,隨著訓練次數增多逐漸降低
        a = dqn.choose_action(s,e)
        s_, r, done, info = env.step(a)
        env.render()
        dqn.push_memory(s, a, r, s_)
        if ((dqn.position !=0)&(dqn.position % 99==0)):
            loss_=dqn.learn()
            count+=1
            print('trained times:',count)
            if (count%40==0):
                avg_reward=np.mean(reward)
                avg_time=np.mean(time_)
                collision_rate=np.mean(collision_his)
                all_reward.append(avg_reward)
                all_time.append(avg_time)
                all_collision.append(collision_rate)
                plt.plot(all_reward)
                plt.show()
                plt.plot(all_time)
                plt.show()
                plt.plot(all_collision)
                plt.show()
                reward=[]
                time_=[]
                collision_his=[]
        s = s_
        reward.append(r)      
    end_time=time.time()
    episode_time=end_time-start_time
    time_.append(episode_time)
    is_collision=1 if info['crashed']==True else 0
    collision_his.append(is_collision)

我在代碼中添加瞭一些畫圖的函數,在運行過程中就可以掌握一些關鍵的指標,每訓練40次統計一次平均值。

平均碰撞發生率:

epoch平均時長(s):

平均reward:

可以看出平均碰撞發生率會隨訓練次數增多逐漸降低,每個epoch持續的時間會逐漸延長(如果發生碰撞epoch會立刻結束)

四、總結

相比於我在之前文章中使用過的模擬器CARLA,highway-env環境包明顯更加抽象化,用類似遊戲的表示方式,使得算法可以在一個理想的虛擬環境中得到訓練,而不用考慮數據獲取方式、傳感器精度、運算時長等現實問題。

對於端到端的算法設計和測試非常友好,但從自動控制的角度來看,可以入手的方面較少,研究起來不太靈活。

以上就是Python實現自動駕駛訓練模型的詳細內容,更多關於Python自動駕駛訓練模型的資料請關註WalkonNet其它相關文章!

推薦閱讀: