python實現決策樹分類算法代碼示例

前置信息

1、決策樹

決策樹是一種十分常用的分類算法,屬於監督學習;也就是給出一批樣本,每個樣本都有一組屬性和一個分類結果。算法通過學習這些樣本,得到一個決策樹,這個決策樹能夠對新的數據給出合適的分類

2、樣本數據

假設現有用戶14名,其個人屬性及是否購買某一產品的數據如下:

編號 年齡 收入范圍 工作性質 信用評級 購買決策
01 <30 不穩定 較差
02 <30 不穩定
03 30-40 不穩定 較差
04 >40 中等 不穩定 較差
05 >40 穩定 較差
06 >40 穩定
07 30-40 穩定
08 <30 中等 不穩定 較差
09 <30 穩定 較差
10 >40 中等 穩定 較差
11 <30 中等 穩定
12 30-40 中等 不穩定
13 30-40 穩定 較差
14 >40 中等 不穩定

策樹分類算法

1、構建數據集

為瞭方便處理,對模擬數據按以下規則轉換為數值型列表數據:

年齡:<30賦值為0;30-40賦值為1;>40賦值為2

收入:低為0;中為1;高為2

工作性質:不穩定為0;穩定為1

信用評級:差為0;好為1

#創建數據集
def createdataset():
    dataSet=[[0,2,0,0,'N'],
            [0,2,0,1,'N'],
            [1,2,0,0,'Y'],
            [2,1,0,0,'Y'],
            [2,0,1,0,'Y'],
            [2,0,1,1,'N'],
            [1,0,1,1,'Y'],
            [0,1,0,0,'N'],
            [0,0,1,0,'Y'],
            [2,1,1,0,'Y'],
            [0,1,1,1,'Y'],
            [1,1,0,1,'Y'],
            [1,2,1,0,'Y'],
            [2,1,0,1,'N'],]
    labels=['age','income','job','credit']
    return dataSet,labels

調用函數,可獲得數據:

ds1,lab = createdataset()
print(ds1)
print(lab)

[[0, 2, 0, 0, ‘N’], [0, 2, 0, 1, ‘N’], [1, 2, 0, 0, ‘Y’], [2, 1, 0, 0, ‘Y’], [2, 0, 1, 0, ‘Y’], [2, 0, 1, 1, ‘N’], [1, 0, 1, 1, ‘Y’], [0, 1, 0, 0, ‘N’], [0, 0, 1, 0, ‘Y’], [2, 1, 1, 0, ‘Y’], [0, 1, 1, 1, ‘Y’], [1, 1, 0, 1, ‘Y’], [1, 2, 1, 0, ‘Y’], [2, 1, 0, 1, ‘N’]]
[‘age’, ‘income’, ‘job’, ‘credit’]

2、數據集信息熵

信息熵也稱為香農熵,是隨機變量的期望。度量信息的不確定程度。信息的熵越大,信息就越不容易搞清楚。處理信息就是為瞭把信息搞清楚,就是熵減少的過程。

def calcShannonEnt(dataSet):
    numEntries = len(dataSet)
    labelCounts = {}
    for featVec in dataSet:
        currentLabel = featVec[-1]
        if currentLabel not in labelCounts.keys():
            labelCounts[currentLabel] = 0
        
        labelCounts[currentLabel] += 1            
        
    shannonEnt = 0.0
    for key in labelCounts:
        prob = float(labelCounts[key])/numEntries
        shannonEnt -= prob*log(prob,2)
    
    return shannonEnt

樣本數據信息熵:

shan = calcShannonEnt(ds1)
print(shan)

0.9402859586706309

3、信息增益

信息增益:用於度量屬性A降低樣本集合X熵的貢獻大小。信息增益越大,越適於對X分類。

def chooseBestFeatureToSplit(dataSet):
    numFeatures = len(dataSet[0])-1
    baseEntropy = calcShannonEnt(dataSet)
    bestInfoGain = 0.0;bestFeature = -1
    for i in range(numFeatures):
        featList = [example[i] for example in dataSet]
        uniqueVals = set(featList)
        newEntroy = 0.0
        for value in uniqueVals:
            subDataSet = splitDataSet(dataSet, i, value)
            prop = len(subDataSet)/float(len(dataSet))
            newEntroy += prop * calcShannonEnt(subDataSet)
        infoGain = baseEntropy - newEntroy
        if(infoGain > bestInfoGain):
            bestInfoGain = infoGain
            bestFeature = i    
    return bestFeature

以上代碼實現瞭基於信息熵增益的ID3決策樹學習算法。其核心邏輯原理是:依次選取屬性集中的每一個屬性,將樣本集按照此屬性的取值分割為若幹個子集;對這些子集計算信息熵,其與樣本的信息熵的差,即為按照此屬性分割的信息熵增益;找出所有增益中最大的那一個對應的屬性,就是用於分割樣本集的屬性。

計算樣本最佳的分割樣本屬性,結果顯示為第0列,即age屬性:

col = chooseBestFeatureToSplit(ds1)
col

0

4、構造決策樹

def majorityCnt(classList):
    classCount = {}
    for vote in classList:
        if vote not in classCount.keys():classCount[vote] = 0
        classCount[vote] += 1
    sortedClassCount = sorted(classList.iteritems(),key=operator.itemgetter(1),reverse=True)#利用operator操作鍵值排序字典
    return sortedClassCount[0][0]

#創建樹的函數    
def createTree(dataSet,labels):
    classList = [example[-1] for example in dataSet]
    if classList.count(classList[0]) == len(classList):
        return classList[0]
    if len(dataSet[0]) == 1:
        return majorityCnt(classList)
    bestFeat = chooseBestFeatureToSplit(dataSet)
    bestFeatLabel = labels[bestFeat]
    myTree = {bestFeatLabel:{}}
    del(labels[bestFeat])
    featValues = [example[bestFeat] for example in dataSet]
    uniqueVals = set(featValues)
    for value in uniqueVals:
        subLabels = labels[:]
        myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), subLabels)
        
    return myTree

majorityCnt函數用於處理一下情況:最終的理想決策樹應該沿著決策分支到達最底端時,所有的樣本應該都是相同的分類結果。但是真實樣本中難免會出現所有屬性一致但分類結果不一樣的情況,此時majorityCnt將這類樣本的分類標簽都調整為出現次數最多的那一個分類結果。

createTree是核心任務函數,它對所有的屬性依次調用ID3信息熵增益算法進行計算處理,最終生成決策樹。

5、實例化構造決策樹

利用樣本數據構造決策樹:

Tree = createTree(ds1, lab)
print("樣本數據決策樹:")
print(Tree)

樣本數據決策樹:
{‘age’: {0: {‘job’: {0: ‘N’, 1: ‘Y’}},
1: ‘Y’,
2: {‘credit’: {0: ‘Y’, 1: ‘N’}}}}

6、測試樣本分類

給出一個新的用戶信息,判斷ta是否購買某一產品:

年齡 收入范圍 工作性質 信用評級
<30 穩定
<30 不穩定
def classify(inputtree,featlabels,testvec):
    firststr = list(inputtree.keys())[0]
    seconddict = inputtree[firststr]
    featindex = featlabels.index(firststr)
    for key in seconddict.keys():
        if testvec[featindex]==key:
            if type(seconddict[key]).__name__=='dict':
                classlabel=classify(seconddict[key],featlabels,testvec)
            else:
                classlabel=seconddict[key]
    return classlabel
labels=['age','income','job','credit']
tsvec=[0,0,1,1]
print('result:',classify(Tree,labels,tsvec))
tsvec1=[0,2,0,1]
print('result1:',classify(Tree,labels,tsvec1))

result: Y
result1: N

後置信息:繪制決策樹代碼

以下代碼用於繪制決策樹圖形,非決策樹算法重點,有興趣可參考學習

import matplotlib.pyplot as plt

decisionNode = dict(boxstyle="sawtooth", fc="0.8")
leafNode = dict(boxstyle="round4", fc="0.8")
arrow_args = dict(arrowstyle="<-")

#獲取葉節點的數目
def getNumLeafs(myTree):
    numLeafs = 0
    firstStr = list(myTree.keys())[0]
    secondDict = myTree[firstStr]
    for key in secondDict.keys():
        if type(secondDict[key]).__name__=='dict':#測試節點的數據是否為字典,以此判斷是否為葉節點
            numLeafs += getNumLeafs(secondDict[key])
        else:   numLeafs +=1
    return numLeafs

#獲取樹的層數
def getTreeDepth(myTree):
    maxDepth = 0
    firstStr = list(myTree.keys())[0]
    secondDict = myTree[firstStr]
    for key in secondDict.keys():
        if type(secondDict[key]).__name__=='dict':#測試節點的數據是否為字典,以此判斷是否為葉節點
            thisDepth = 1 + getTreeDepth(secondDict[key])
        else:   thisDepth = 1
        if thisDepth > maxDepth: maxDepth = thisDepth
    return maxDepth

#繪制節點
def plotNode(nodeTxt, centerPt, parentPt, nodeType):
    createPlot.ax1.annotate(nodeTxt, xy=parentPt,  xycoords='axes fraction',
             xytext=centerPt, textcoords='axes fraction',
             va="center", ha="center", bbox=nodeType, arrowprops=arrow_args )

#繪制連接線  
def plotMidText(cntrPt, parentPt, txtString):
    xMid = (parentPt[0]-cntrPt[0])/2.0 + cntrPt[0]
    yMid = (parentPt[1]-cntrPt[1])/2.0 + cntrPt[1]
    createPlot.ax1.text(xMid, yMid, txtString, va="center", ha="center", rotation=30)

#繪制樹結構  
def plotTree(myTree, parentPt, nodeTxt):#if the first key tells you what feat was split on
    numLeafs = getNumLeafs(myTree)  #this determines the x width of this tree
    depth = getTreeDepth(myTree)
    firstStr = list(myTree.keys())[0]     #the text label for this node should be this
    cntrPt = (plotTree.xOff + (1.0 + float(numLeafs))/2.0/plotTree.totalW, plotTree.yOff)
    plotMidText(cntrPt, parentPt, nodeTxt)
    plotNode(firstStr, cntrPt, parentPt, decisionNode)
    secondDict = myTree[firstStr]
    plotTree.yOff = plotTree.yOff - 1.0/plotTree.totalD
    for key in secondDict.keys():
        if type(secondDict[key]).__name__=='dict':#test to see if the nodes are dictonaires, if not they are leaf nodes   
            plotTree(secondDict[key],cntrPt,str(key))        #recursion
        else:   #it's a leaf node print the leaf node
            plotTree.xOff = plotTree.xOff + 1.0/plotTree.totalW
            plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode)
            plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key))
    plotTree.yOff = plotTree.yOff + 1.0/plotTree.totalD

#創建決策樹圖形    
def createPlot(inTree):
    fig = plt.figure(1, facecolor='white')
    fig.clf()
    axprops = dict(xticks=[], yticks=[])
    createPlot.ax1 = plt.subplot(111, frameon=False, **axprops)    #no ticks
    #createPlot.ax1 = plt.subplot(111, frameon=False) #ticks for demo puropses 
    plotTree.totalW = float(getNumLeafs(inTree))
    plotTree.totalD = float(getTreeDepth(inTree))
    plotTree.xOff = -0.5/plotTree.totalW; plotTree.yOff = 1.0;
    plotTree(inTree, (0.5,1.0), '')
    plt.savefig('決策樹.png',dpi=300,bbox_inches='tight')
    plt.show()

總結

到此這篇關於python實現決策樹分類算法的文章就介紹到這瞭,更多相關python決策樹分類算法內容請搜索WalkonNet以前的文章或繼續瀏覽下面的相關文章希望大傢以後多多支持WalkonNet!

推薦閱讀: