Python數據處理之pd.Series()函數的基本使用
1.Series介紹
Pandas模塊的數據結構主要有兩種:1.Series 2.DataFrame
Series 是一維數組,基於Numpy的ndarray 結構
Series([data, index, dtype, name, copy, …]) # One-dimensional ndarray with axis labels (including time series).
2.Series創建
import Pandas as pd import numpy as np
1.pd.Series([list],index=[list])
參數為list ,index為可選參數,若不填寫則默認為index從0開始
obj = pd.Series([4, 7, -5, 3, 7, np.nan]) obj
輸出結果為:
0 4.0
1 7.0
2 -5.0
3 3.0
4 7.0
5 NaN
dtype: float64
2.pd.Series(np.arange())
arr = np.arange(6) s = pd.Series(arr) s
輸出結果為:
0 0
1 1
2 2
3 3
4 4
5 5
dtype: int32
pd.Series({dict}) d = {'a':10,'b':20,'c':30,'d':40,'e':50} s = pd.Series(d) s
輸出結果為:
a 10
b 20
c 30
d 40
e 50
dtype: int64
可以通過DataFrame中某一行或者某一列創建序列
3 Series基本屬性
- Series.values:Return Series as ndarray or ndarray-like depending on the dtype
obj.values # array([ 4., 7., -5., 3., 7., nan])
- Series.index:The index (axis labels) of the Series.
obj.index # RangeIndex(start=0, stop=6, step=1)
- Series.name:Return name of the Series.
4 索引
- Series.loc:Access a group of rows and columns by label(s) or a boolean array.
- Series.iloc:Purely integer-location based indexing for selection by position.
5 計算、描述性統計
Series.value_counts:Return a Series containing counts of unique values.
index = ['Bob', 'Steve', 'Jeff', 'Ryan', 'Jeff', 'Ryan'] obj = pd.Series([4, 7, -5, 3, 7, np.nan],index = index) obj.value_counts()
輸出結果為:
7.0 2
3.0 1
-5.0 1
4.0 1
dtype: int64
6 排序
Series.sort_values
Series.sort_values(self, axis=0, ascending=True, inplace=False, kind='quicksort', na_position='last')
Parameters:
Parameters | Description |
---|---|
axis | {0 or ‘index’}, default 0,Axis to direct sorting. The value ‘index’ is accepted for compatibility with DataFrame.sort_values. |
ascendin | bool, default True,If True, sort values in ascending order, otherwise descending. |
inplace | bool, default FalseIf True, perform operation in-place. |
kind | {‘quicksort’, ‘mergesort’ or ‘heapsort’}, default ‘quicksort’Choice of sorting algorithm. See also numpy.sort() for more information. ‘mergesort’ is the only stable algorithm. |
na_position | {‘first’ or ‘last’}, default ‘last’,Argument ‘first’ puts NaNs at the beginning, ‘last’ puts NaNs at the end. |
Returns:
Series:Series ordered by values.
obj.sort_values()
輸出結果為:
Jeff -5.0
Ryan 3.0
Bob 4.0
Steve 7.0
Jeff 7.0
Ryan NaN
dtype: float64
- Series.rank
Series.rank(self, axis=0, method='average', numeric_only=None, na_option='keep', ascending=True, pct=False)[source]
Parameters:
Parameters | Description |
---|---|
axis | {0 or ‘index’, 1 or ‘columns’}, default 0Index to direct ranking. |
method | {‘average’, ‘min’, ‘max’, ‘first’, ‘dense’}, default ‘average’How to rank the group of records that have the same value (i.e. ties): average, average rank of the group; min: lowest rank in the group; max: highest rank in the group; first: ranks assigned in order they appear in the array; dense: like ‘min’, but rank always increases by 1,between groups |
numeric_only | bool, optional,For DataFrame objects, rank only numeric columns if set to True. |
na_option | {‘keep’, ‘top’, ‘bottom’}, default ‘keep’, How to rank NaN values:;keep: assign NaN rank to NaN values; top: assign smallest rank to NaN values if ascending; bottom: assign highest rank to NaN values if ascending |
ascending | bool, default True Whether or not the elements should be ranked in ascending order. |
pct | bool, default False Whether or not to display the returned rankings in percentile form. |
Returns:
same type as caller :Return a Series or DataFrame with data ranks as values.
# obj.rank() #從大到小排,NaN還是NaN obj.rank(method='dense') # obj.rank(method='min') # obj.rank(method='max') # obj.rank(method='first') # obj.rank(method='dense')
輸出結果為:
Bob 3.0
Steve 4.0
Jeff 1.0
Ryan 2.0
Jeff 4.0
Ryan NaN
dtype: float64
總結
到此這篇關於Python數據處理之pd.Series()函數的基本使用的文章就介紹到這瞭,更多相關Python pd.Series()函數內容請搜索WalkonNet以前的文章或繼續瀏覽下面的相關文章希望大傢以後多多支持WalkonNet!
推薦閱讀:
- pandas實現按照多列排序-ascending
- Pandas數值排序 sort_values()的使用
- Python Pandas學習之Pandas數據結構詳解
- Pandas數據類型之category的用法
- Python Pandas 中的數據結構詳解