Python+matplotlib繪制多子圖的方法詳解

本文速覽

matplotlib.pyplot api 繪制子圖

面向對象方式繪制子圖

matplotlib.gridspec.GridSpec繪制子圖

任意位置添加子圖

關於pyplot和面向對象兩種繪圖方式可參考之前文章:matplotlib.pyplot api verus matplotlib object-oriented

1、matplotlib.pyplot api 方式添加子圖

import matplotlib.pyplot as plt
my_dpi=96
plt.figure(figsize=(480/my_dpi,480/my_dpi),dpi=my_dpi)
plt.subplot(221)
plt.plot([1,2,3])


plt.subplot(222)
plt.bar([1,2,3],[4,5,6])
plt.title('plt.subplot(222)')#註意比較和上面面向對象方式的差異
plt.xlabel('set_xlabel')
plt.ylabel('set_ylabel',fontsize=15,color='g')#設置y軸刻度標簽
plt.xlim(0,8)#設置x軸刻度范圍
plt.xticks(range(0,10,2))   # 設置x軸刻度間距
plt.tick_params(axis='x', labelsize=20, rotation=45)#x軸標簽旋轉、字號等

plt.subplot(223)
plt.plot([1,2,3])

plt.subplot(224)
plt.bar([1,2,3],[4,5,6])


plt.suptitle('matplotlib.pyplot api',color='r')
fig.tight_layout(rect=(0,0,1,0.9))




plt.subplots_adjust(left=0.125,
                    bottom=-0.51,
                    right=1.3,
                    top=0.88,
                    wspace=0.2,
                    hspace=0.2
                   )
                   

#plt.tight_layout()

plt.show()

2、面向對象方式添加子圖

import matplotlib.pyplot as plt
my_dpi=96
fig, axs = plt.subplots(2,2,figsize=(480/my_dpi,480/my_dpi),dpi=my_dpi,
                       sharex=False,#x軸刻度值共享開啟
                       sharey=False,#y軸刻度值共享關閉                        
                        
                       )
#fig為matplotlib.figure.Figure對象
#axs為matplotlib.axes.Axes,把fig分成2x2的子圖
axs[0][0].plot([1,2,3])
axs[0][1].bar([1,2,3],[4,5,6])
axs[0][1].set(title='title')#設置axes及子圖標題
axs[0][1].set_xlabel('set_xlabel',fontsize=15,color='g')#設置x軸刻度標簽
axs[0][1].set_ylabel('set_ylabel',fontsize=15,color='g')#設置y軸刻度標簽
axs[0][1].set_xlim(0,8)#設置x軸刻度范圍
axs[0][1].set_xticks(range(0,10,2))   # 設置x軸刻度間距
axs[0][1].tick_params(axis='x', #可選'y','both'
                      labelsize=20, rotation=45)#x軸標簽旋轉、字號等


axs[1][0].plot([1,2,3])
axs[1][1].bar([1,2,3],[4,5,6])

fig.suptitle('matplotlib object-oriented',color='r')#設置fig即整整張圖的標題

#修改子圖在整個figure中的位置(上下左右)
plt.subplots_adjust(left=0.125,
                    bottom=-0.61,
                    right=1.3,#防止右邊子圖y軸標題與左邊子圖重疊
                    top=0.88,
                    wspace=0.2,
                    hspace=0.2
                   )

# 參數介紹
'''
## The figure subplot parameters.  All dimensions are a fraction of the figure width and height.
#figure.subplot.left:   0.125  # the left side of the subplots of the figure
#figure.subplot.right:  0.9    # the right side of the subplots of the figure
#figure.subplot.bottom: 0.11   # the bottom of the subplots of the figure
#figure.subplot.top:    0.88   # the top of the subplots of the figure
#figure.subplot.wspace: 0.2    # the amount of width reserved for space between subplots,
                               # expressed as a fraction of the average axis width
#figure.subplot.hspace: 0.2    # the amount of height reserved for space between subplots,
                               # expressed as a fraction of the average axis height


'''


plt.show()

3、matplotlib.pyplot add_subplot方式添加子圖

my_dpi=96
fig = plt.figure(figsize=(480/my_dpi,480/my_dpi),dpi=my_dpi)
fig.add_subplot(221)
plt.plot([1,2,3])

fig.add_subplot(222)
plt.bar([1,2,3],[4,5,6])
plt.title('fig.add_subplot(222)')

fig.add_subplot(223)
plt.plot([1,2,3])

fig.add_subplot(224)
plt.bar([1,2,3],[4,5,6])
plt.suptitle('matplotlib.pyplot api:add_subplot',color='r')

4、matplotlib.gridspec.GridSpec方式添加子圖

語法:matplotlib.gridspec.GridSpec(nrows, ncols, figure=None, left=None, bottom=None, right=None, top=None, wspace=None, hspace=None, width_ratios=None, height_ratios=None)

import matplotlib.pyplot as plt
from matplotlib.gridspec import GridSpec


fig = plt.figure(dpi=100,
                 constrained_layout=True,#類似於tight_layout,使得各子圖之間的距離自動調整【類似excel中行寬根據內容自適應】
                 
                )

gs = GridSpec(3, 3, figure=fig)#GridSpec將fiure分為3行3列,每行三個axes,gs為一個matplotlib.gridspec.GridSpec對象,可靈活的切片figure
ax1 = fig.add_subplot(gs[0, 0:1])
plt.plot([1,2,3])
ax2 = fig.add_subplot(gs[0, 1:3])#gs[0, 0:3]中0選取figure的第一行,0:3選取figure第二列和第三列

#ax3 = fig.add_subplot(gs[1, 0:2])
plt.subplot(gs[1, 0:2])#同樣可以使用基於pyplot api的方式
plt.scatter([1,2,3],[4,5,6],marker='*')

ax4 = fig.add_subplot(gs[1:3, 2:3])
plt.bar([1,2,3],[4,5,6])

ax5 = fig.add_subplot(gs[2, 0:1])
ax6 = fig.add_subplot(gs[2, 1:2])

fig.suptitle("GridSpec",color='r')
plt.show()

5、子圖中繪制子圖

import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec


def format_axes(fig):
    for i, ax in enumerate(fig.axes):
        ax.text(0.5, 0.5, "ax%d" % (i+1), va="center", ha="center")
        ax.tick_params(labelbottom=False, labelleft=False)


# 子圖中再繪制子圖
fig = plt.figure(dpi=100,
                constrained_layout=True,
                )

gs0 = GridSpec(1, 2, figure=fig)#將figure切片為1行2列的兩個子圖

gs00 = gridspec.GridSpecFromSubplotSpec(3, 3, subplot_spec=gs0[0])#將以上第一個子圖gs0[0]再次切片為3行3列的9個axes
#gs0[0]子圖自由切片
ax1 = fig.add_subplot(gs00[:-1, :])
ax2 = fig.add_subplot(gs00[-1, :-1])
ax3 = fig.add_subplot(gs00[-1, -1])

gs01 = gs0[1].subgridspec(3, 3)#將以上第二個子圖gs0[1]再次切片為3行3列的axes
#gs0[1]子圖自由切片
ax4 = fig.add_subplot(gs01[:, :-1])
ax5 = fig.add_subplot(gs01[:-1, -1])
ax6 = fig.add_subplot(gs01[-1, -1])

plt.suptitle("GridSpec Inside GridSpec",color='r')
format_axes(fig)

plt.show()

6、任意位置繪制子圖(plt.axes)

plt.subplots(1,2,dpi=100)
plt.subplot(121)
plt.plot([1,2,3])


plt.subplot(122)
plt.plot([1,2,3])



plt.axes([0.7, 0.2, 0.15, 0.15], ## [left, bottom, width, height]四個參數(fractions of figure)可以非常靈活的調節子圖中子圖的位置     
        )
plt.bar([1,2,3],[1,2,3],color=['r','b','g'])


plt.axes([0.2, 0.6, 0.15, 0.15], 
        )
plt.bar([1,2,3],[1,2,3],color=['r','b','g'])

以上就是Python+matplotlib繪制多子圖的方法詳解的詳細內容,更多關於Python matplotlib多子圖的資料請關註WalkonNet其它相關文章!

推薦閱讀: