C語言實現手寫紅黑樹的示例代碼
前沿
寫C的紅黑樹前建議先看我博客這篇文章Java-紅黑樹 主要看原理
紅黑樹代碼
#ifndef STUDY_RBTREE_H #define STUDY_RBTREE_H #include "charkvlinked.h" typedef int boolean;//定義一個佈爾類型 #define TRUE 1 #define FALSE 0 enum COL{RED=0,BLACK=1}; typedef struct rBNode { char *key; //元素key void *value; //元素值 int color; //節點顏色 struct rBNode *left; //左孩子 struct rBNode *right; //右孩子 struct rBNode *parent; //父結點 }RBNode; typedef struct rBTree{ RBNode *root; //根結點 int size; //結點數量 } RBTree; #define isRed(rBNode) ((rBNode != NULL) && (rBNode->color == RED)) ? TRUE : FALSE #define isBlack(rBNode) ((rBNode != NULL) && (rBNode->color == BLACK)) ? TRUE : FALSE #define colorOf(rBNode) rBNode != NULL ? rBNode->color : BLACK #define parentOf(rBNode) rBNode != NULL ? rBNode->parent : NULL #define setBlack(rBNode) rBNode != NULL ? rBNode->color = BLACK : NULL #define setRed(rBNode) rBNode != NULL ? rBNode->color = RED : NULL #define setParent(rBNode,replace) rBNode != NULL ? rBNode->parent = replace : NULL #define setColor(rBNode,parent) rBNode != NULL ? rBNode->color = colorOf(parent) : NULL CharKvLinked * getAllKeyAndValueRbTree(RBTree * tree); RBTree *createRBTree(); RBNode *createRbTreeNode(char *key, void *value); void insertOrUpdateRBTreeKey(RBTree *tree, RBNode *node); void insertRBTreeKeyRepetition(RBTree *tree, RBNode *node); boolean isExistRbTree(RBTree *pTree, char *key); RBNode *searchRbTree(RBTree *pTree, char *key); RBNode *iterativeSearchRbTree(RBTree *pTree, char *key); void removeRbTree(RBTree *tree, char *key); void destroyRbTree(RBTree *tree) ; #endif //STUDY_RBTREE_H
#include "rbtree.h" #include <stdio.h> #include <string.h> #include <stdlib.h> /* * 打印"紅黑樹" * * key -- 節點的鍵值 * direction -- 0,表示該節點是根節點; * -1,表示該節點是它的父結點的左孩子; * 1,表示該節點是它的父結點的右孩子。 */ static void printRbTree_(RBNode *node, char *data, int direction) { if (node != NULL) { int i = isRed(node); if (direction == 0) // tree是根節點 { printf("%s (%s) is root 他的左節點: %s,他的右節點:%s ,他的內存地址是:%p\n", node->key, i ? "紅" : "黑", node->left == NULL ? "NULL" : node->left->key, node->right == NULL ? "NULL" : node->right->key, node); } else // tree是分支節點 { printf("%s (%s) 是 %s' 的 %s 子節點,他的左節點:%s ,他的右節點:%s ,他的內存地址是:%p\n", node->key, i ? "紅" : "黑", data, direction == 1 ? "right" : "left", node->left == NULL ? "NULL" : node->left->key, node->right == NULL ? "NULL" : node->right->key, node); } printRbTree_(node->left, node->key, -1); printRbTree_(node->right, node->key, 1); } } void printRbTreeNode(RBTree *root) { if (root->root != NULL) { printRbTree_(root->root, root->root->key, 0); } } /* * 對紅黑樹的節點(x)進行左旋轉 * * 左旋示意圖(對節點x進行左旋): * px px * / / * x y * / \ --(左旋)-. / \ * lx y x ry * / \ / \ * ly ry lx ly * * px px * \ \ * x y * / \ --(左旋)-. / \ * lx y x ry * / \ / \ * ly ry lx ly * * 沒有父節點的情況,也就表示x是根節點的情況 * x y * / \ --(左旋)-. / \ * lx y x ry * / \ / \ * ly ry lx ly * * x y * \ / \ * y x ry * \ * ry * * * */ static void leftRotateRbTree(RBTree *tree, RBNode *x) { if (x != NULL) { //1.獲取x的右孩子,即y RBNode *y = x->right; //2.將y的左孩子設置為x的右孩子 x->right = y->left; // 左子樹不為空,需要更新父節點 if (y->left != NULL) { y->left->parent = x; } // 3. 空出節點x的父節點 y->parent = x->parent; //4.父節點指向右兒子 if (x->parent == NULL) { // 右兒子成為新的根節點 tree->root = y; } else if (x == x->parent->left) { // 右兒子成為父節點的左兒子 x->parent->left = y; } else { // 右兒子成為父節點的右兒子 x->parent->right = y; } //5. 節點x成為y的左子樹 y->left = x; x->parent = y; } } /* * 對紅黑樹的節點(y)進行右旋轉 * * 右旋示意圖(對節點y進行右旋): * py py * / / * y x * / \ --(右旋)-. / \ * x ry lx y * / \ / \ * lx rx rx ry * * py py * \ \ * y x * / \ --(右旋)-. / \ * x ry lx y * / \ / \ * lx rx rx ry * * y x * / \ --(右旋)-. / \ * x ry lx y * / \ / \ * lx rx rx ry * * * * */ static void rightRotateRbTree(RBTree *tree, RBNode *y) { if (y != NULL) { // 記錄p的左兒子 RBNode *x = y->left; // 1. 空出左兒子的右子樹 y->left = x->right; // 右子樹不為空,需要更新父節點 if (x->right != NULL) { x->right->parent = y; } // 2. 空出節點p的父節點 x->parent = y->parent; // 父節點指向左兒子 if (y->parent == NULL) { // 左兒子成為整棵樹根節點 tree->root = x; } else if (y->parent->left == y) { // 左兒子成為父節點左兒子 y->parent->left = x; } else { // 左兒子成為父節點的右兒子 y->parent->right = x; } // 3. 順利會師 x->right = y; y->parent = x; } } //創建紅黑樹 RBTree *createRBTree() { RBTree *tree = (RBTree *) malloc(sizeof(RBTree)); tree->root = NULL; tree->size = 0; return tree; } //創建節點 RBNode *createRbTreeNode(char *key, void *value) { RBNode *node = (RBNode *) malloc(sizeof(RBNode)); node->key = key; node->value = value; node->left = NULL; node->right = NULL; node->parent = NULL; node->color = RED; return node; } static void insertRbTreeFixUp(RBTree *tree, RBNode *node) { RBNode *parent, *gparent; // 若“父節點存在,並且父節點的顏色是紅色” while (((parent = parentOf(node)) != NULL) && isRed(parent)) { gparent = parentOf(parent); //若“父節點”是“祖父節點的左孩子” if (parent == gparent->left) { // Case 1條件:叔叔節點是紅色 RBNode *uncle = gparent->right; if (isRed(uncle)) { setBlack(uncle);//父節點 setBlack(parent);//叔節點 setRed(gparent);//租節點 node = gparent; continue; } // Case 2條件:叔叔是黑色,且當前節點是右孩子 if (parent->right == node) { RBNode *tmp; leftRotateRbTree(tree, parent); tmp = parent; parent = node; node = tmp; } // Case 3條件:叔叔是黑色,且當前節點是左孩子。 setBlack(parent); setRed(gparent); rightRotateRbTree(tree, gparent); } else { //若當前節點的父節點是當前節點的祖父節點的右孩子 // Case 1條件:叔叔節點是紅色 RBNode *uncle = gparent->left; if (isRed(uncle)) { setBlack(uncle); setBlack(parent); setRed(gparent); node = gparent; continue; } // Case 2條件:叔叔是黑色,且當前節點是左孩子 if (parent->left == node) { RBNode *tmp; rightRotateRbTree(tree, parent); tmp = parent; parent = node; node = tmp; } // Case 3條件:叔叔是黑色,且當前節點是右孩子。 setBlack(parent); setRed(gparent); leftRotateRbTree(tree, gparent); } } // 將根節點設為黑色 setBlack(tree->root); } static void insertRBTree(RBTree *tree, RBNode *node, int type) { int cmp; RBNode *y = NULL; RBNode *x = tree->root; // 1. 將紅黑樹當作一顆二叉查找樹,將節點添加到二叉查找樹中。 while (x != NULL) { y = x;//拿到為NULL的上一個節點 cmp = strcmp(node->key, x->key); if (cmp < 0) { x = x->left; } else { x = x->right; } } node->parent = y; if (y != NULL) { cmp = strcmp(node->key, y->key); if (cmp < 0) { y->left = node; } else if (cmp > 0) { y->right = node; } else { if (type == 1) { // 如果key相等,則更新value y->value = node->value; } else { //支持重復插入 y->right = node; } } } else { tree->root = node; } // 2. 設置節點的顏色為紅色 node->color = RED; // 3. 將它重新修正為一顆二叉查找樹 insertRbTreeFixUp(tree, node); tree->size++; } //插入節點不允許重復插入,如果重復插入,則更新value void insertOrUpdateRBTreeKey(RBTree *tree, RBNode *node) { insertRBTree(tree, node, 1); } //插入節點允許重復插入 void insertRBTreeKeyRepetition(RBTree *tree, RBNode *node) { insertRBTree(tree, node, 0); } /* * (遞歸實現)查找"紅黑樹x"中鍵值為key的節點 */ static RBNode *searchRbTree_(RBNode *x, char *key) { if (x == NULL) { return x; } int cmp = strcmp(key, x->key); if (cmp < 0) { return searchRbTree_(x->left, key); } else if (cmp > 0) { return searchRbTree_(x->right, key); } else { return x; } } RBNode *searchRbTree(RBTree *pTree, char *key) { return searchRbTree_(pTree->root, key); } //判斷節點是否存在 boolean isExistRbTree(RBTree *pTree, char *key) { RBNode *node = searchRbTree(pTree, key); if (node == NULL) { return FALSE; } else { return TRUE; } } /* * (非遞歸實現)查找"紅黑樹x"中鍵值為key的節點 */ RBNode *iterativeSearchRbTree_(RBNode *x, char *key) { while (x != NULL) { int cmp = strcmp(key, x->key); if (cmp < 0) { x = x->left; } else if (cmp > 0) { x = x->right; } else { return x; } } return x; } RBNode *iterativeSearchRbTree(RBTree *pTree, char *key) { return iterativeSearchRbTree_(pTree->root, key); } //獲取所有的key和value void getAllKeyAndValueRbTree_(CharKvLinked *pLinked, RBNode *node) { if (node != NULL) { insertCharKvLinkedHeadNode(pLinked, createCharKvLinkedNode(node->key, node->value)); getAllKeyAndValueRbTree_(pLinked, node->left); getAllKeyAndValueRbTree_(pLinked, node->right); } } //獲取所有的key和value CharKvLinked *getAllKeyAndValueRbTree(RBTree *tree) { CharKvLinked *pLinked = createCharKvLinked(); getAllKeyAndValueRbTree_(pLinked, tree->root); return pLinked; } /* * 紅黑樹刪除修正函數 * * 在從紅黑樹中刪除插入節點之後(紅黑樹失去平衡),再調用該函數; * 目的是將它重新塑造成一顆紅黑樹。 * * 參數說明: * node 待修正的節點 */ static void removeRbTreeFixUp(RBTree *tree, RBNode *node, RBNode *parent) { RBNode *other; while ((node == NULL || isBlack(node)) && (node != tree->root)) { if (parent->left == node) { other = parent->right; if (isRed(other)) { // Case 1: x的兄弟w是紅色的 setBlack(other); setRed(parent); leftRotateRbTree(tree, parent); other = parent->right; } if ((other->left == NULL || isBlack(other->left)) && (other->right == NULL || isBlack(other->right))) { // Case 2: x的兄弟w是黑色,且w的倆個孩子也都是黑色的 setRed(other); node = parent; parent = parentOf(node); } else { if (other->right == NULL || isBlack(other->right)) { // Case 3: x的兄弟w是黑色的,並且w的左孩子是紅色,右孩子為黑色。 setBlack(other->left); setRed(other); rightRotateRbTree(tree, other); other = parent->right; } // Case 4: x的兄弟w是黑色的;並且w的右孩子是紅色的,左孩子任意顏色。 setColor(other, parent); setBlack(parent); setBlack(other->right); leftRotateRbTree(tree, parent); node = tree->root; break; } } else { other = parent->left; if (isRed(other)) { // Case 1: x的兄弟w是紅色的 setBlack(other); setRed(parent); rightRotateRbTree(tree, parent); other = parent->left; } if ((other->left == NULL || isBlack(other->left)) && (other->right == NULL || isBlack(other->right))) { // Case 2: x的兄弟w是黑色,且w的倆個孩子也都是黑色的 setRed(other); node = parent; parent = parentOf(node); } else { if (other->left == NULL || isBlack(other->left)) { // Case 3: x的兄弟w是黑色的,並且w的左孩子是紅色,右孩子為黑色。 setBlack(other->right); setRed(other); leftRotateRbTree(tree, other); other = parent->left; } // Case 4: x的兄弟w是黑色的;並且w的右孩子是紅色的,左孩子任意顏色。 setColor(other, parent); setBlack(parent); setBlack(other->left); rightRotateRbTree(tree, parent); node = tree->root; break; } } } if (node != NULL) { setBlack(node); } } static void removeRbTree_(RBTree *tree, RBNode *node) { RBNode *child, *parent; boolean color; // 被刪除節點的"左右孩子都不為空"的情況。 if ((node->left != NULL) && (node->right != NULL)) { // 被刪節點的後繼節點。(稱為"取代節點") // 用它來取代"被刪節點"的位置,然後再將"被刪節點"去掉。 RBNode *replace = node; // 獲取後繼節點 replace = replace->right; while (replace->left != NULL) { replace = replace->left; } // "node節點"不是根節點(隻有根節點不存在父節點) if (parentOf(node) != NULL) { if (parentOf(node) == node) { (parentOf(node))->left = replace; } else { (parentOf(node))->right = replace; } } else { // "node節點"是根節點,更新根節點。 tree->root = replace; } // child是"取代節點"的右孩子,也是需要"調整的節點"。 // "取代節點"肯定不存在左孩子!因為它是一個後繼節點。 child = replace->right; parent = parentOf(replace); // 保存"取代節點"的顏色 color = colorOf(replace); // "被刪除節點"是"它的後繼節點的父節點" if (parent == node) { parent = replace; } else { // child不為空 if (child != NULL) { setParent(child, parent); } parent->left = child; replace->right = node->right; setParent(node->right, replace); } replace->parent = node->parent; replace->color = node->color; replace->left = node->left; node->left->parent = replace; if (color == BLACK) { removeRbTreeFixUp(tree, child, parent); } node = NULL; return; } if (node->left != NULL) { child = node->left; } else { child = node->right; } parent = node->parent; // 保存"取代節點"的顏色 color = node->color; if (child != NULL) { child->parent = parent; } // "node節點"不是根節點 if (parent != NULL) { if (parent->left == node) { parent->left = child; } else { parent->right = child; } } else { tree->root = child; } if (color == BLACK) { removeRbTreeFixUp(tree, child, parent); } node = NULL; } /* * 刪除結點(z),並返回被刪除的結點 * * 參數說明: * tree 紅黑樹的根結點 * z 刪除的結點 */ void removeRbTree(RBTree *tree, char *key) { RBNode *node; if ((node = searchRbTree(tree, key)) != NULL) { removeRbTree_(tree, node); tree->size--; } } /* * 銷毀紅黑樹 */ static void destroyRbTree_(RBNode *tree) { if (tree == NULL) { return; } if (tree->left != NULL) { destroyRbTree_(tree->left); } if (tree->right != NULL) { destroyRbTree_(tree->right); } free(tree); } void destroyRbTree(RBTree *tree) { destroyRbTree_(tree->root); free(tree); } //樹結構不建議使用迭代,我們可以使用前序,中序,後續遍歷來實現 需要自己寫代碼 //前序遍歷 //void preOrder(RBNode *tree) { // if (tree != NULL) { // printf("%s ", tree->key); // preOrder(tree->left); // preOrder(tree->right); // } //}
測試
int main() { RBTree *pTree = createRBTree(); for (int i = 0; i < 10; i++) { char *str = (char *) malloc(sizeof(char) * 10); sprintf(str, "%d", i); insertOrUpdateRBTreeKey(pTree, createRbTreeNode(str, str)); } printRbTreeNode(pTree); destroyRbTree(pTree); }
以上就是C語言實現手寫紅黑樹的示例代碼的詳細內容,更多關於C語言紅黑樹的資料請關註WalkonNet其它相關文章!