PyTorch 編寫代碼遇到的問題及解決方案

PyTorch編寫代碼遇到的問題

錯誤提示:no module named xxx

xxx為自定義文件夾的名字

因為搜索不到,所以將當前路徑加入到包的搜索目錄

解決方法:

import sys
sys.path.append('..') #將上層目錄加入到搜索路徑中
sys.path.append('/home/xxx') # 絕對路徑
import os
sys.path.append(os.getcwd()) #  #將當前工作路徑加入到搜索路徑中

還可以在當前終端的命令行設置

export PYTHONPATH=$PYTHONPATH:./

錯誤提示:AttributeError: ‘NoneType’ object has no attribute ‘shape’ height, width, channel = img.shape

在Linux系統下img.shape報錯AttributeError: ‘NoneType’ object has no attribute ‘shape’

img=cv2.imread(),讀取一張圖片時,img.shape是包含三個量的元組,分別是:

img.shape[0]:圖像的高度

img.shape[1]:圖像的寬度

img.shape[2]:圖像的通道數

解決方法:讀的文件出錯 或者查看文件路徑是否正確

錯誤提示 :TypeError: slice indices must be integers or None or have an index method

cropped_im = img[ny1 : ny2, nx1 : nx2, :]

解決方法:需要將ny1 : ny2, nx1 : nx2轉換成int類型

錯誤提示 :Input type (torch.cuda.DoubleTensor) and weight type (torch.cuda.FloatTensor) should be the same

以下三小段分別是Data type CPU tensor GPU tensor

32-bit floating point torch.FloatTensor torch.cuda.FloatTensor

64-bit floating point torch.DoubleTensor torch.cuda.DoubleTensor

出錯在類型轉換

np.float更改為np.float32

import torchvision.transforms as transforms
import numpy as np
transform = transforms.ToTensor()
def convert_image_to_tensor(image):
    """convert an image to pytorch tensor
        image: numpy array , h * w * c
        image_tensor: pytorch.FloatTensor, c * h * w
        """
    image = image.astype(np.float32) 
    return transform(image)

錯誤提示:RuntimeError: zero-dimensional tensor (at position 0) cannot be concatenated

版本問題 舊式寫法

import torch
x = torch.tensor(0.1)
y = torch.tensor(0.2)
z = torch.cat((x, y))

改成新式寫法

x = torch.tensor([0.1])
y = torch.tensor([0.2])
z = torch.cat((x, y))
print(z)

結果

tensor([0.1000, 0.2000])

錯誤提示:TypeError: ‘float’ object is not subscriptable

多瞭下標 a = x.tolist()[0]

去除下標 a = x.tolist()

錯誤提示:argument ‘input’ (position 1) must be Tensor, not list

需要將list轉換成tensor

假設a是list

torch.tensor(a)

GPU模型和CPU模型之間的轉換

假設原來保存的是GPU模型,要轉換為CPU模型

torch.save(model, os.path.join( "./complete.pth"))
cpu_model = torch.load("./complete.pth", map_location=lambda storage, loc: storage)
dummy_input = torch.randn(1, 3, 224, 224)

假設原來保存的是CPU模型,要轉換為GPU模型

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
torch.save(model, os.path.join( "./complete.pth"))
gpu_model = torch.load("./complete.pth", map_location=lambda storage, loc: storage.cuda)
dummy_input = torch.randn(1, 3, 224, 224)
dummy_input = dummy_input.to(device)

錯誤提示 RuntimeError: Subtraction, the – operator, with a bool tensor is not supported. If you are trying to invert a mask, use the ~ or logical_not() operator instead.

原代碼

# Store only unsuppressed boxes for this class
image_boxes.append(class_decoded_locs[1 - suppress])
image_labels.append(torch.LongTensor((1 - suppress).sum().item() * [c]).to(device))
image_scores.append(class_scores[1 - suppress])

更改為

image_boxes.append(class_decoded_locs[~suppress])
image_labels.append(torch.LongTensor((~ suppress).sum().item() * [c]).to(device))
image_scores.append(class_scores[~suppress])

錯誤提示 RuntimeError: Expected object of scalar type Byte but got scalar type Bool for argument #2 ‘other’ in call to _th_max

原代碼

suppress = torch.zeros((n_above_min_score), dtype=torch.uint8).to(device) 

更改為

suppress = torch.zeros((n_above_min_score), dtype=torch.bool).to(device)  

UserWarning: volatile was removed and now has no effect. Use with torch.no_grad(): instead.

#之前舊版本
...
x = Variable(torch.randn(1), volatile=True)
return x

#新版
with torch.no_grad():
    ...
    x = torch.randn(1)
return x

錯誤提示

RuntimeError: Attempting to deserialize object on CUDA device 1 but torch.cuda.device_count() is 1. Please use torch.load with map_location to map your storages to an existing device.

或者是 RuntimeError: expected device cuda:0 but got device cuda:1

錯誤原因之一

使用瞭CUDA 1顯卡訓練保存的模型文件,使用CUDA 0驗證

代碼中寫瞭

device = torch.device(“cuda” if torch.cuda.is_available() else “cpu”)

可以在命令行設置讓哪些GPU可見

export CUDA_VISIBLE_DEVICES=1 #GPU編號
export CUDA_VISIBLE_DEVICES=0,1,2,3#4張顯卡可見

也可以在代碼裡改成

checkpoint = torch.load(checkpoint,map_location=‘cuda:0')

錯誤提示

raise ConnectionError(e, request=request)
requests.exceptions.ConnectionError: HTTPConnectionPool(host=’localhost’, port=8097): Max retries exceeded with url: /update (Caused by NewConnectionError(‘<urllib3.connection.HTTPConnection object at 0x7f3111915e80>: Failed to establish a new connection: [Errno 111] Connection refused’,))
Exception in user code:

解決方案

因為沒有啟動visdom可視化程序,所有報錯

在終端執行命令 visdom之後就能看到如下信息

Checking for scripts.
It's Alive!
INFO:root:Application Started
You can navigate to http://localhost:8097

nn.Module.cuda() 和 Tensor.cuda()

無論是對於模型還是數據,cuda() 都能實現從CPU到GPU的內存遷移,但是他們的作用效果有所不同。

Model:

model = model.cuda()
model.cuda()

上面兩句能夠達到一樣的效果,即對model自身進行的內存遷移

Tensor:

model = Model()
tensor = torch.zeros([2, 3, 10, 10])
model.cuda()
tensor.cuda()
tensor_cuda = tensor.cuda()
model(tensor) # 會報錯
model(tensor_cuda) # 正常運行

和 nn.Module 不同,調用 tensor.cuda 隻是返回這個 tensor 對象在 GPU 內存上的拷貝,而不會對自身進行改變。因此必須對 tensor 進行重新賦值,即 tensor = tensor.cuda()

PyTorch 0.4 計算累積損失的不同

以廣泛使用的模式 total_loss += loss.data[0] 為例。Python0.4.0 之前,loss 是一個封裝瞭 (1,) 張量的 Variable,但 Python0.4.0 的 loss 現在是一個零維的標量。對標量進行 索引是沒有意義的(似乎會報 invalid index to scalar variable 的錯誤)。使用 loss.item() 可以從標量中獲取 Python 數字。所以改為:

total_loss = total_loss + loss.item()

如果在累加損失時未將其轉換為 Python 數字,則可能出現程序內存使用量增加的情況。這是因為上面表達式的右側原本是一個 Python 浮點數,而它現在是一個零維張量。因此,總損失累加瞭張量和它們的梯度歷史,這可能會產生很大的 autograd 圖,耗費內存和計算資源。

自適應 CPU 和 GPU設備的 trick

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = Model().to(device)

total_loss = 0
for input, target in train_loader:
 input, target = input.to(device), target.to(device)
 ...
 total_loss = total_loss + loss.item()

with torch.no_grad():
 for input, target in test_loader:
 ...

torch.Tensor.detach的使用

官方說明:Returns a new Tensor, detached from the current graph,The result will never require gradient

假設有模型 A 和模型 B,我們需要將 A 的輸出作為 B 的輸入,但訓練時我們隻訓練模型 B. 那麼可以這樣做:

input_B = output_A.detach

它可以使兩個計算圖的梯度傳遞斷開,從而實現我們所需的功能。

pytorch中loss函數的參數設置

以CrossEntropyLoss為例:

CrossEntropyLoss(self, weight=None, size_average=None, ignore_index=-100, reduce=None, reduction=’elementwise_mean’)

若 reduce = False,那麼 size_average 參數失效,直接返回向量形式的 loss,即batch中每個元素對應的loss.

若 reduce = True,那麼 loss 返回的是標量:

如果 size_average = True,返回 loss.mean.

如果 size_average = False,返回 loss.sum.

weight : 輸入一個1D的權值向量,為各個類別的loss加權,如下公式所示:

在這裡插入圖片描述

ignore_index : 選擇要忽視的目標值,使其對輸入梯度不作貢獻。如果 size_average = True,那麼隻計算不被忽視的目標的loss的均值。

reduction : 可選的參數有:‘none’ | ‘elementwise_mean’ | ‘sum’, 正如參數的字面意思。

多GPU的處理機制

使用多GPU時,應該記住 PyTorch 的處理邏輯是:

在各個GPU上初始化模型。

前向傳播時,把batch分配到各個GPU上進行計算。

得到的輸出在主GPU上進行匯總,計算loss並反向傳播,更新主GPU上的權值。

把主GPU上的模型復制到其它GPU上。

訓練時損失出現nan的問題

訓練模型時出現損失為 nan 的情況

可能導致梯度出現 nan 的三個原因:

梯度爆炸。也就是說梯度數值超出范圍變成 nan. 通常可以調小學習率、加 BN 層或者做梯度裁剪來試試看有沒有解決。

損失函數或者網絡設計。比方說,出現瞭除 0,或者出現一些邊界情況導致函數不可導,比方說log(0)、sqrt(0).

臟數據。可以事先對輸入數據進行判斷看看是否存在 nan.

補充一下nan數據的判斷方法:

註意!像 nan 或者 inf 這樣的數值不能使用 == 或者 is 來判斷!為瞭安全起見統一使用 math.isnan 或者 numpy.isnan 吧。

import numpy as np
if np.any(np.isnan(input.cpu().numpy())):
 print("Input data has NaN!")
if(np.isnan(loss.item())):
 print("Loss value is NaN!")

pytorch 內存泄漏

torch.as_tensor(data, dtype=None,device=None)->Tensor : 為data生成tensor。

如果data已經是tensor,且dtype和device與參數相同,則生成的tensor會和data共享內存。如果data是ndarray,且dtype對應,devices為cpu,則同樣共享內存。其他情況則不共享內存。

import torch
import numpy
a = numpy.array([1, 2, 3])
t = torch.as_tensor(a)

以上為個人經驗,希望能給大傢一個參考,也希望大傢多多支持WalkonNet。

推薦閱讀: