Pytorch DataLoader shuffle驗證方式
shuffle = False時,不打亂數據順序
shuffle = True,隨機打亂
import numpy as np import h5py import torch from torch.utils.data import DataLoader, Dataset h5f = h5py.File('train.h5', 'w'); data1 = np.array([[1,2,3], [2,5,6], [3,5,6], [4,5,6]]) data2 = np.array([[1,1,1], [1,2,6], [1,3,6], [1,4,6]]) h5f.create_dataset(str('data'), data=data1) h5f.create_dataset(str('label'), data=data2) class Dataset(Dataset): def __init__(self): h5f = h5py.File('train.h5', 'r') self.data = h5f['data'] self.label = h5f['label'] def __getitem__(self, index): data = torch.from_numpy(self.data[index]) label = torch.from_numpy(self.label[index]) return data, label def __len__(self): assert self.data.shape[0] == self.label.shape[0], "wrong data length" return self.data.shape[0] dataset_train = Dataset() loader_train = DataLoader(dataset=dataset_train, batch_size=2, shuffle = True) for i, data in enumerate(loader_train): train_data, label = data print(train_data)
pytorch DataLoader使用細節
背景:
我一開始是對數據擴增這一塊有疑問, 隻看到瞭數據變換(torchvisiom.transforms),但是沒看到數據擴增, 後來搞明白瞭, 數據擴增在pytorch指的是torchvisiom.transforms + torch.utils.data.DataLoader+多個epoch共同作用下完成的,
數據變換共有以下內容
composed = transforms.Compose([transforms.Resize((448, 448)), # resize transforms.RandomCrop(300), # random crop transforms.ToTensor(), transforms.Normalize(mean=[0.5, 0.5, 0.5], # normalize std=[0.5, 0.5, 0.5])])
簡單的數據讀取類, 進返回PIL格式的image:
class MyDataset(data.Dataset): def __init__(self, labels_file, root_dir, transform=None): with open(labels_file) as csvfile: self.labels_file = list(csv.reader(csvfile)) self.root_dir = root_dir self.transform = transform def __len__(self): return len(self.labels_file) def __getitem__(self, idx): im_name = os.path.join(root_dir, self.labels_file[idx][0]) im = Image.open(im_name) if self.transform: im = self.transform(im) return im
下面是主程序
labels_file = "F:/test_temp/labels.csv" root_dir = "F:/test_temp" dataset_transform = MyDataset(labels_file, root_dir, transform=composed) dataloader = data.DataLoader(dataset_transform, batch_size=1, shuffle=False) """原始數據集共3張圖片, 以batch_size=1, epoch為2 展示所有圖片(共6張) """ for eopch in range(2): plt.figure(figsize=(6, 6)) for ind, i in enumerate(dataloader): a = i[0, :, :, :].numpy().transpose((1, 2, 0)) plt.subplot(1, 3, ind+1) plt.imshow(a)
從上述圖片總可以看到, 在每個eopch階段實際上是對原始圖片重新使用瞭transform, , 這就造就瞭數據的擴增
以上為個人經驗,希望能給大傢一個參考,也希望大傢多多支持WalkonNet。
推薦閱讀:
- 我對PyTorch dataloader裡的shuffle=True的理解
- torch.utils.data.DataLoader與迭代器轉換操作
- Pytorch如何加載自己的數據集(使用DataLoader讀取Dataset)
- pytorch加載自己的圖片數據集的2種方法詳解
- pytorch 帶batch的tensor類型圖像顯示操作