numpy實現RNN原理實現
首先說明代碼隻是幫助理解,並未寫出梯度下降部分,默認參數已經被固定,不影響理解。代碼主要實現RNN原理,隻使用numpy庫,不可用於GPU加速。
import numpy as np class Rnn(): def __init__(self, input_size, hidden_size, num_layers, bidirectional=False): self.input_size = input_size self.hidden_size = hidden_size self.num_layers = num_layers self.bidirectional = bidirectional def feed(self, x): ''' :param x: [seq, batch_size, embedding] :return: out, hidden ''' # x.shape [sep, batch, feature] # hidden.shape [hidden_size, batch] # Whh0.shape [hidden_size, hidden_size] Wih0.shape [hidden_size, feature] # Whh1.shape [hidden_size, hidden_size] Wih1.size [hidden_size, hidden_size] out = [] x, hidden = np.array(x), [np.zeros((self.hidden_size, x.shape[1])) for i in range(self.num_layers)] Wih = [np.random.random((self.hidden_size, self.hidden_size)) for i in range(1, self.num_layers)] Wih.insert(0, np.random.random((self.hidden_size, x.shape[2]))) Whh = [np.random.random((self.hidden_size, self.hidden_size)) for i in range(self.num_layers)] time = x.shape[0] for i in range(time): hidden[0] = np.tanh((np.dot(Wih[0], np.transpose(x[i, ...], (1, 0))) + np.dot(Whh[0], hidden[0]) )) for i in range(1, self.num_layers): hidden[i] = np.tanh((np.dot(Wih[i], hidden[i-1]) + np.dot(Whh[i], hidden[i]) )) out.append(hidden[self.num_layers-1]) return np.array(out), np.array(hidden) def sigmoid(x): return 1.0/(1.0 + 1.0/np.exp(x)) if __name__ == '__main__': rnn = Rnn(1, 5, 4) input = np.random.random((6, 2, 1)) out, h = rnn.feed(input) print(f'seq is {input.shape[0]}, batch_size is {input.shape[1]} ', 'out.shape ', out.shape, ' h.shape ', h.shape) # print(sigmoid(np.random.random((2, 3)))) # # element-wise multiplication # print(np.array([1, 2])*np.array([2, 1]))
到此這篇關於numpy實現RNN原理實現的文章就介紹到這瞭,更多相關numpy實現RNN內容請搜索WalkonNet以前的文章或繼續瀏覽下面的相關文章希望大傢以後多多支持WalkonNet!
推薦閱讀:
- pytorch lstm gru rnn 得到每個state輸出的操作
- 深入學習PyTorch中LSTM的輸入和輸出
- Numpy中的shape函數的用法詳解
- 使用Python建立RNN實現二進制加法的示例代碼
- pytorch中使用LSTM詳解