Python Pandas模塊實現數據的統計分析的方法

一、groupby函數

Python中的groupby函數,它主要的作用是進行數據的分組以及分組之後的組內的運算,也可以用來探索各組之間的關系,首先我們導入我們需要用到的模塊

import pandas as pd

首先導入我們所需要用到的數據集

customer = pd.read_csv("Churn_Modelling.csv")
marketing = pd.read_csv("DirectMarketing.csv")

我們先從一個簡單的例子著手來看,

customer[['Geography','Gender','EstimatedSalary']].groupby(['Geography','Gender']).mean()

從上面的結果可以得知,在“法國”這一類當中的“女性(Female)”這一類的預估工資的平均值達到瞭99564歐元,“男性”達到瞭100174歐元

當然除瞭求平均數之外,我們還有其他的統計方式,比如“count”、“min”、“max”等等,例如下面的代碼

customer[['Geography','Gender','EstimatedSalary']].groupby(['Geography','Gender']).agg(['mean','count','max'])

當然我們也可以對不同的列采取不同的統計方式方法,例如

customer[['Geography','EstimatedSalary','Balance']].groupby('Geography').agg({'EstimatedSalary':'sum', 'Balance':'mean'})

我們對“EstimatedSalary”這一列做瞭加總的操作,而對“Balance”這一列做瞭求平均值的操作

二、Crosstab函數

在處理數據時,經常需要對數據分組計算均值或者計數,在Microsoft Excel中,可以通過透視表輕易實現簡單的分組運算。而對於更加復雜的分組計算,“Pandas”模塊中的“Crosstab”函數也能夠幫助我們實現。

例如我們想要計算不同年齡階段、不同性別的平均工資同時保留一位小數,代碼如下

pd.crosstab(index=marketing.Age, columns=marketing.Gender, values=marketing.Salary, aggfunc='mean').round(1)

當然我們還可以用該函數來制作一個更加復雜一點的透視表,例如下面的代碼

pd.crosstab(index=[marketing.Age, marketing.Married], columns=marketing.Gender,values=marketing.Salary, aggfunc='mean', margins=True).round(1)

三、Pivot_table函數

和上面的“Cross_tab”函數的功能相類似,對於數據透視表而言,由於它的靈活性高,可以隨意定制你的分析計算要求,而且操作性強,因此在實際的工作生活當中被廣泛使用,

例如下面的代碼,參數“margins”對應表格當中的“All”這一列

pd.pivot_table(data=marketing, index=['Age', 'Married'], columns='Gender', values='Salary', aggfunc='mean', margins=True).round(1)

四、Sidetable函數

“Sidetable”可以被理解為是“Pandas”模塊中的第三方的插件,它集合瞭制作透視表以及對數據集做統計分析等功能,讓我們來實際操作一下吧

首先我們要下載安裝這個“Sidetable”組件,

pip install sidetable

五、Freq函數

首先介紹的是“Sidetable”插件當中的“Freq”函數,裡面包含瞭離散值每個類型的數量,其中是有百分比形式來呈現以及數字的形式來呈現,還有離散值每個類型的累加總和的呈現,具體大傢看下面的代碼和例子

import sidetable
marketing.stb.freq(['Age'])

“Age”這一列有三大類分別是“Middle”、“Young”以及“Old”的數據,例如我們看到表格當中的“Middle”這一列的數量有508個,占比有50.8%

marketing.stb.freq(['Age'], value='AmountSpent')

例如上面的代碼,顯示的則是比方說當“Age”是“Middle”的時候,也就是中年群體,“AmountSpent”的總和,也就是花費的總和是762859元

六、Missing函數

“Sidetable”函數當中的“Missing”方法顧名思義就是返回缺失值的數量以及百分比,例如下面的代碼,“History”這一列的缺失值占到瞭30.3%

marketing.stb.missing()

七、Counts函數

“Sidetable”函數當中的“counts”方法用來計算各個類型的離散值出現的數量,具體看下面的例子

marketing.stb.counts()

例如“Gender”這一列中,總共有兩個,也就是“unique”這一列所代表的值,其中“Female”占到的比重更大,有506個,而“Male”占到的比重更小一些,有494個

到此這篇關於Python Pandas模塊實現數據的統計分析的方法的文章就介紹到這瞭,更多相關Pandas模塊實現數據的統計分析內容請搜索WalkonNet以前的文章或繼續瀏覽下面的相關文章希望大傢以後多多支持WalkonNet!

推薦閱讀: