手把手教你使用TensorFlow2實現RNN

概述

RNN (Recurrent Netural Network) 是用於處理序列數據的神經網絡. 所謂序列數據, 即前面的輸入和後面的輸入有一定的聯系.

在這裡插入圖片描述

權重共享

傳統神經網絡:

在這裡插入圖片描述

RNN:

在這裡插入圖片描述

RNN 的權重共享和 CNN 的權重共享類似, 不同時刻共享一個權重, 大大減少瞭參數數量.

計算過程:

在這裡插入圖片描述

計算狀態 (State)

在這裡插入圖片描述

計算輸出:

在這裡插入圖片描述

案例

數據集

IBIM 數據集包含瞭來自互聯網的 50000 條關於電影的評論, 分為正面評價和負面評價.

RNN 層

class RNN(tf.keras.Model):

    def __init__(self, units):
        super(RNN, self).__init__()

        # 初始化 [b, 64] (b 表示 batch_size)
        self.state0 = [tf.zeros([batch_size, units])]
        self.state1 = [tf.zeros([batch_size, units])]

        # [b, 80] => [b, 80, 100]
        self.embedding = tf.keras.layers.Embedding(total_words, embedding_len, input_length=max_review_len)

        self.rnn_cell0 = tf.keras.layers.SimpleRNNCell(units=units, dropout=0.2)
        self.rnn_cell1 = tf.keras.layers.SimpleRNNCell(units=units, dropout=0.2)

        # [b, 80, 100] => [b, 64] => [b, 1]
        self.out_layer = tf.keras.layers.Dense(1)

    def call(self, inputs, training=None):
        """

        :param inputs: [b, 80]
        :param training:
        :return:
        """

        state0 = self.state0
        state1 = self.state1

        x = self.embedding(inputs)

        for word in tf.unstack(x, axis=1):
            out0, state0 = self.rnn_cell0(word, state0, training=training)
            out1, state1 = self.rnn_cell1(out0, state1, training=training)

        # [b, 64] -> [b, 1]
        x = self.out_layer(out1)

        prob = tf.sigmoid(x)

        return prob

獲取數據

def get_data():
    # 獲取數據
    (X_train, y_train), (X_test, y_test) = tf.keras.datasets.imdb.load_data(num_words=total_words)

    # 更改句子長度
    X_train = tf.keras.preprocessing.sequence.pad_sequences(X_train, maxlen=max_review_len)
    X_test = tf.keras.preprocessing.sequence.pad_sequences(X_test, maxlen=max_review_len)

    # 調試輸出
    print(X_train.shape, y_train.shape)  # (25000, 80) (25000,)
    print(X_test.shape, y_test.shape)  # (25000, 80) (25000,)

    # 分割訓練集
    train_db = tf.data.Dataset.from_tensor_slices((X_train, y_train))
    train_db = train_db.shuffle(10000).batch(batch_size, drop_remainder=True)

    # 分割測試集
    test_db = tf.data.Dataset.from_tensor_slices((X_test, y_test))
    test_db = test_db.batch(batch_size, drop_remainder=True)

    return train_db, test_db

完整代碼

import tensorflow as tf


class RNN(tf.keras.Model):

    def __init__(self, units):
        super(RNN, self).__init__()

        # 初始化 [b, 64]
        self.state0 = [tf.zeros([batch_size, units])]
        self.state1 = [tf.zeros([batch_size, units])]

        # [b, 80] => [b, 80, 100]
        self.embedding = tf.keras.layers.Embedding(total_words, embedding_len, input_length=max_review_len)

        self.rnn_cell0 = tf.keras.layers.SimpleRNNCell(units=units, dropout=0.2)
        self.rnn_cell1 = tf.keras.layers.SimpleRNNCell(units=units, dropout=0.2)

        # [b, 80, 100] => [b, 64] => [b, 1]
        self.out_layer = tf.keras.layers.Dense(1)

    def call(self, inputs, training=None):
        """

        :param inputs: [b, 80]
        :param training:
        :return:
        """

        state0 = self.state0
        state1 = self.state1

        x = self.embedding(inputs)

        for word in tf.unstack(x, axis=1):
            out0, state0 = self.rnn_cell0(word, state0, training=training)
            out1, state1 = self.rnn_cell1(out0, state1, training=training)

        # [b, 64] -> [b, 1]
        x = self.out_layer(out1)

        prob = tf.sigmoid(x)

        return prob


# 超參數
total_words = 10000  # 文字數量
max_review_len = 80  # 句子長度
embedding_len = 100  # 詞維度
batch_size = 1024  # 一次訓練的樣本數目
learning_rate = 0.0001  # 學習率
iteration_num = 20  # 迭代次數
optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate)  # 優化器
loss = tf.losses.BinaryCrossentropy(from_logits=True)  # 損失
model = RNN(64)

# 調試輸出summary
model.build(input_shape=[None, 64])
print(model.summary())

# 組合
model.compile(optimizer=optimizer, loss=loss, metrics=["accuracy"])


def get_data():
    # 獲取數據
    (X_train, y_train), (X_test, y_test) = tf.keras.datasets.imdb.load_data(num_words=total_words)

    # 更改句子長度
    X_train = tf.keras.preprocessing.sequence.pad_sequences(X_train, maxlen=max_review_len)
    X_test = tf.keras.preprocessing.sequence.pad_sequences(X_test, maxlen=max_review_len)

    # 調試輸出
    print(X_train.shape, y_train.shape)  # (25000, 80) (25000,)
    print(X_test.shape, y_test.shape)  # (25000, 80) (25000,)

    # 分割訓練集
    train_db = tf.data.Dataset.from_tensor_slices((X_train, y_train))
    train_db = train_db.shuffle(10000).batch(batch_size, drop_remainder=True)

    # 分割測試集
    test_db = tf.data.Dataset.from_tensor_slices((X_test, y_test))
    test_db = test_db.batch(batch_size, drop_remainder=True)

    return train_db, test_db


if __name__ == "__main__":
    # 獲取分割的數據集
    train_db, test_db = get_data()

    # 擬合
    model.fit(train_db, epochs=iteration_num, validation_data=test_db, validation_freq=1)

輸出結果:

Model: “rnn”
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
embedding (Embedding) multiple 1000000
_________________________________________________________________
simple_rnn_cell (SimpleRNNCe multiple 10560
_________________________________________________________________
simple_rnn_cell_1 (SimpleRNN multiple 8256
_________________________________________________________________
dense (Dense) multiple 65
=================================================================
Total params: 1,018,881
Trainable params: 1,018,881
Non-trainable params: 0
_________________________________________________________________
None

(25000, 80) (25000,)
(25000, 80) (25000,)
Epoch 1/20
2021-07-10 17:59:45.150639: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:176] None of the MLIR Optimization Passes are enabled (registered 2)
24/24 [==============================] – 12s 294ms/step – loss: 0.7113 – accuracy: 0.5033 – val_loss: 0.6968 – val_accuracy: 0.4994
Epoch 2/20
24/24 [==============================] – 7s 292ms/step – loss: 0.6951 – accuracy: 0.5005 – val_loss: 0.6939 – val_accuracy: 0.4994
Epoch 3/20
24/24 [==============================] – 7s 297ms/step – loss: 0.6937 – accuracy: 0.5000 – val_loss: 0.6935 – val_accuracy: 0.4994
Epoch 4/20
24/24 [==============================] – 8s 316ms/step – loss: 0.6934 – accuracy: 0.5001 – val_loss: 0.6933 – val_accuracy: 0.4994
Epoch 5/20
24/24 [==============================] – 7s 301ms/step – loss: 0.6934 – accuracy: 0.4996 – val_loss: 0.6933 – val_accuracy: 0.4994
Epoch 6/20
24/24 [==============================] – 8s 334ms/step – loss: 0.6932 – accuracy: 0.5000 – val_loss: 0.6932 – val_accuracy: 0.4994
Epoch 7/20
24/24 [==============================] – 10s 398ms/step – loss: 0.6931 – accuracy: 0.5006 – val_loss: 0.6932 – val_accuracy: 0.4994
Epoch 8/20
24/24 [==============================] – 9s 382ms/step – loss: 0.6930 – accuracy: 0.5006 – val_loss: 0.6931 – val_accuracy: 0.4994
Epoch 9/20
24/24 [==============================] – 8s 322ms/step – loss: 0.6924 – accuracy: 0.4995 – val_loss: 0.6913 – val_accuracy: 0.5240
Epoch 10/20
24/24 [==============================] – 8s 321ms/step – loss: 0.6812 – accuracy: 0.5501 – val_loss: 0.6655 – val_accuracy: 0.5767
Epoch 11/20
24/24 [==============================] – 8s 318ms/step – loss: 0.6381 – accuracy: 0.6896 – val_loss: 0.6235 – val_accuracy: 0.7399
Epoch 12/20
24/24 [==============================] – 8s 323ms/step – loss: 0.6088 – accuracy: 0.7655 – val_loss: 0.6110 – val_accuracy: 0.7533
Epoch 13/20
24/24 [==============================] – 8s 321ms/step – loss: 0.5949 – accuracy: 0.7956 – val_loss: 0.6111 – val_accuracy: 0.7878
Epoch 14/20
24/24 [==============================] – 8s 324ms/step – loss: 0.5859 – accuracy: 0.8142 – val_loss: 0.5993 – val_accuracy: 0.7904
Epoch 15/20
24/24 [==============================] – 8s 330ms/step – loss: 0.5791 – accuracy: 0.8318 – val_loss: 0.5961 – val_accuracy: 0.7907
Epoch 16/20
24/24 [==============================] – 8s 340ms/step – loss: 0.5739 – accuracy: 0.8421 – val_loss: 0.5942 – val_accuracy: 0.7961
Epoch 17/20
24/24 [==============================] – 9s 378ms/step – loss: 0.5701 – accuracy: 0.8497 – val_loss: 0.5933 – val_accuracy: 0.8014
Epoch 18/20
24/24 [==============================] – 9s 361ms/step – loss: 0.5665 – accuracy: 0.8589 – val_loss: 0.5958 – val_accuracy: 0.8082
Epoch 19/20
24/24 [==============================] – 8s 353ms/step – loss: 0.5630 – accuracy: 0.8681 – val_loss: 0.5931 – val_accuracy: 0.7966
Epoch 20/20
24/24 [==============================] – 8s 314ms/step – loss: 0.5614 – accuracy: 0.8702 – val_loss: 0.5925 – val_accuracy: 0.7959

Process finished with exit code 0

到此這篇關於手把手教你使用TensorFlow2實現RNN的文章就介紹到這瞭,更多相關TensorFlow2實現RNN內容請搜索WalkonNet以前的文章或繼續瀏覽下面的相關文章希望大傢以後多多支持WalkonNet!

推薦閱讀: