詳解TensorFlow訓練網絡兩種方式
TensorFlow訓練網絡有兩種方式,一種是基於tensor(array),另外一種是迭代器
兩種方式區別是:
- 第一種是要加載全部數據形成一個tensor,然後調用model.fit()然後指定參數batch_size進行將所有數據進行分批訓練
- 第二種是自己先將數據分批形成一個迭代器,然後遍歷這個迭代器,分別訓練每個批次的數據
方式一:通過迭代器
IMAGE_SIZE = 1000 # step1:加載數據集 (train_images, train_labels), (val_images, val_labels) = tf.keras.datasets.mnist.load_data() # step2:將圖像歸一化 train_images, val_images = train_images / 255.0, val_images / 255.0 # step3:設置訓練集大小 train_images = train_images[:IMAGE_SIZE] val_images = val_images[:IMAGE_SIZE] train_labels = train_labels[:IMAGE_SIZE] val_labels = val_labels[:IMAGE_SIZE] # step4:將圖像的維度變為(IMAGE_SIZE,28,28,1) train_images = tf.expand_dims(train_images, axis=3) val_images = tf.expand_dims(val_images, axis=3) # step5:將圖像的尺寸變為(32,32) train_images = tf.image.resize(train_images, [32, 32]) val_images = tf.image.resize(val_images, [32, 32]) # step6:將數據變為迭代器 train_loader = tf.data.Dataset.from_tensor_slices((train_images, train_labels)).batch(32) val_loader = tf.data.Dataset.from_tensor_slices((val_images, val_labels)).batch(IMAGE_SIZE) # step5:導入模型 model = LeNet5() # 讓模型知道輸入數據的形式 model.build(input_shape=(1, 32, 32, 1)) # 結局Output Shape為 multiple model.call(Input(shape=(32, 32, 1))) # step6:編譯模型 model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy']) # 權重保存路徑 checkpoint_path = "./weight/cp.ckpt" # 回調函數,用戶保存權重 save_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_path, save_best_only=True, save_weights_only=True, monitor='val_loss', verbose=0) EPOCHS = 11 for epoch in range(1, EPOCHS): # 每個批次訓練集誤差 train_epoch_loss_avg = tf.keras.metrics.Mean() # 每個批次訓練集精度 train_epoch_accuracy = tf.keras.metrics.SparseCategoricalAccuracy() # 每個批次驗證集誤差 val_epoch_loss_avg = tf.keras.metrics.Mean() # 每個批次驗證集精度 val_epoch_accuracy = tf.keras.metrics.SparseCategoricalAccuracy() for x, y in train_loader: history = model.fit(x, y, validation_data=val_loader, callbacks=[save_callback], verbose=0) # 更新誤差,保留上次 train_epoch_loss_avg.update_state(history.history['loss'][0]) # 更新精度,保留上次 train_epoch_accuracy.update_state(y, model(x, training=True)) val_epoch_loss_avg.update_state(history.history['val_loss'][0]) val_epoch_accuracy.update_state(next(iter(val_loader))[1], model(next(iter(val_loader))[0], training=True)) # 使用.result()計算每個批次的誤差和精度結果 print("Epoch {:d}: trainLoss: {:.3f}, trainAccuracy: {:.3%} valLoss: {:.3f}, valAccuracy: {:.3%}".format(epoch, train_epoch_loss_avg.result(), train_epoch_accuracy.result(), val_epoch_loss_avg.result(), val_epoch_accuracy.result()))
方式二:適用model.fit()進行分批訓練
import model_sequential (train_images, train_labels), (test_images, test_labels) = tf.keras.datasets.mnist.load_data() # step2:將圖像歸一化 train_images, test_images = train_images / 255.0, test_images / 255.0 # step3:將圖像的維度變為(60000,28,28,1) train_images = tf.expand_dims(train_images, axis=3) test_images = tf.expand_dims(test_images, axis=3) # step4:將圖像尺寸改為(60000,32,32,1) train_images = tf.image.resize(train_images, [32, 32]) test_images = tf.image.resize(test_images, [32, 32]) # step5:導入模型 # history = LeNet5() history = model_sequential.LeNet() # 讓模型知道輸入數據的形式 history.build(input_shape=(1, 32, 32, 1)) # history(tf.zeros([1, 32, 32, 1])) # 結局Output Shape為 multiple history.call(Input(shape=(32, 32, 1))) history.summary() # step6:編譯模型 history.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy']) # 權重保存路徑 checkpoint_path = "./weight/cp.ckpt" # 回調函數,用戶保存權重 save_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_path, save_best_only=True, save_weights_only=True, monitor='val_loss', verbose=1) # step7:訓練模型 history = history.fit(train_images, train_labels, epochs=10, batch_size=32, validation_data=(test_images, test_labels), callbacks=[save_callback])
到此這篇關於詳解TensorFlow訓練網絡兩種方式的文章就介紹到這瞭,更多相關TensorFlow訓練網絡內容請搜索WalkonNet以前的文章或繼續瀏覽下面的相關文章希望大傢以後多多支持WalkonNet!
推薦閱讀:
- Python神經網絡TensorFlow基於CNN卷積識別手寫數字
- 手把手教你使用TensorFlow2實現RNN
- Python實戰之MNIST手寫數字識別詳解
- Tensorflow 2.4 搭建單層和多層 Bi-LSTM 模型
- 一小時學會TensorFlow2之Fashion Mnist