tensorflow2 自定義損失函數使用的隱藏坑
Keras的核心原則是逐步揭示復雜性,可以在保持相應的高級便利性的同時,對操作細節進行更多控制。當我們要自定義fit中的訓練算法時,可以重寫模型中的train_step方法,然後調用fit來訓練模型。
這裡以tensorflow2官網中的例子來說明:
import numpy as np import tensorflow as tf from tensorflow import keras x = np.random.random((1000, 32)) y = np.random.random((1000, 1)) class CustomModel(keras.Model): tf.random.set_seed(100) def train_step(self, data): # Unpack the data. Its structure depends on your model and # on what you pass to `fit()`. x, y = data with tf.GradientTape() as tape: y_pred = self(x, training=True) # Forward pass # Compute the loss value # (the loss function is configured in `compile()`) loss = self.compiled_loss(y, y_pred, regularization_losses=self.losses) # Compute gradients trainable_vars = self.trainable_variables gradients = tape.gradient(loss, trainable_vars) # Update weights self.optimizer.apply_gradients(zip(gradients, trainable_vars)) # Update metrics (includes the metric that tracks the loss) self.compiled_metrics.update_state(y, y_pred) # Return a dict mapping metric names to current value return {m.name: m.result() for m in self.metrics} # Construct and compile an instance of CustomModel inputs = keras.Input(shape=(32,)) outputs = keras.layers.Dense(1)(inputs) model = CustomModel(inputs, outputs) model.compile(optimizer="adam", loss=tf.losses.MSE, metrics=["mae"]) # Just use `fit` as usual model.fit(x, y, epochs=1, shuffle=False) 32/32 [==============================] - 0s 1ms/step - loss: 0.2783 - mae: 0.4257 <tensorflow.python.keras.callbacks.History at 0x7ff7edf6dfd0>
這裡的loss是tensorflow庫中實現瞭的損失函數,如果想自定義損失函數,然後將損失函數傳入model.compile中,能正常按我們預想的work嗎?
答案竟然是否定的,而且沒有錯誤提示,隻是loss計算不會符合我們的預期。
def custom_mse(y_true, y_pred): return tf.reduce_mean((y_true - y_pred)**2, axis=-1) a_true = tf.constant([1., 1.5, 1.2]) a_pred = tf.constant([1., 2, 1.5]) custom_mse(a_true, a_pred) <tf.Tensor: shape=(), dtype=float32, numpy=0.11333332> tf.losses.MSE(a_true, a_pred) <tf.Tensor: shape=(), dtype=float32, numpy=0.11333332>
以上結果證實瞭我們自定義loss的正確性,下面我們直接將自定義的loss置入compile中的loss參數中,看看會發生什麼。
my_model = CustomModel(inputs, outputs) my_model.compile(optimizer="adam", loss=custom_mse, metrics=["mae"]) my_model.fit(x, y, epochs=1, shuffle=False) 32/32 [==============================] - 0s 820us/step - loss: 0.1628 - mae: 0.3257 <tensorflow.python.keras.callbacks.History at 0x7ff7edeb7810>
我們看到,這裡的loss與我們與標準的tf.losses.MSE明顯不同。這說明我們自定義的loss以這種方式直接傳遞進model.compile中,是完全錯誤的操作。
正確運用自定義loss的姿勢是什麼呢?下面揭曉。
loss_tracker = keras.metrics.Mean(name="loss") mae_metric = keras.metrics.MeanAbsoluteError(name="mae") class MyCustomModel(keras.Model): tf.random.set_seed(100) def train_step(self, data): # Unpack the data. Its structure depends on your model and # on what you pass to `fit()`. x, y = data with tf.GradientTape() as tape: y_pred = self(x, training=True) # Forward pass # Compute the loss value # (the loss function is configured in `compile()`) loss = custom_mse(y, y_pred) # loss += self.losses # Compute gradients trainable_vars = self.trainable_variables gradients = tape.gradient(loss, trainable_vars) # Update weights self.optimizer.apply_gradients(zip(gradients, trainable_vars)) # Compute our own metrics loss_tracker.update_state(loss) mae_metric.update_state(y, y_pred) return {"loss": loss_tracker.result(), "mae": mae_metric.result()} @property def metrics(self): # We list our `Metric` objects here so that `reset_states()` can be # called automatically at the start of each epoch # or at the start of `evaluate()`. # If you don't implement this property, you have to call # `reset_states()` yourself at the time of your choosing. return [loss_tracker, mae_metric] # Construct and compile an instance of CustomModel inputs = keras.Input(shape=(32,)) outputs = keras.layers.Dense(1)(inputs) my_model_beta = MyCustomModel(inputs, outputs) my_model_beta.compile(optimizer="adam") # Just use `fit` as usual my_model_beta.fit(x, y, epochs=1, shuffle=False) 32/32 [==============================] - 0s 960us/step - loss: 0.2783 - mae: 0.4257 <tensorflow.python.keras.callbacks.History at 0x7ff7eda3d810>
終於,通過跳過在 compile() 中傳遞損失函數,而在 train_step 中手動完成所有計算內容,我們獲得瞭與之前默認tf.losses.MSE完全一致的輸出,這才是我們想要的結果。
總結一下,當我們在模型中想用自定義的損失函數,不能直接傳入fit函數,而是需要在train_step中手動傳入,完成計算過程。
到此這篇關於tensorflow2 自定義損失函數使用的隱藏坑的文章就介紹到這瞭,更多相關tensorflow2 自定義損失函數內容請搜索WalkonNet以前的文章或繼續瀏覽下面的相關文章希望大傢以後多多支持WalkonNet!
推薦閱讀:
- 基於Keras的擴展性使用
- Python keras.metrics源代碼分析
- 一小時學會TensorFlow2之Fashion Mnist
- tensorflow2.0教程之Keras快速入門
- 詳解TensorFlow訓練網絡兩種方式