java多線程使用mdc追蹤日志方式
多線程使用mdc追蹤日志
背景
多線程情況下,子線程的sl4j打印日志缺少traceId等信息,導致定位問題不方便
解決方案
- 打印日志時添加用戶ID、trackId等信息,缺點是每個日志都要手動添加
- 使用mdc直接拷貝父線程值
實現
// 新建線程時: Map<String, String> mdcContextMap = MDC.getCopyOfContextMap() // 子線程運行時: if(null != mdcContextMap){ MDC.setContextMap(mdcContextMap); } // 銷毀線程時 MDC.clear();
參考
import org.slf4j.MDC; import java.util.Map; import java.util.concurrent.*; /** * A SLF4J MDC-compatible {@link ThreadPoolExecutor}. * <p/> * In general, MDC is used to store diagnostic information (e.g. a user's session id) in per-thread variables, to facilitate * logging. However, although MDC data is passed to thread children, this doesn't work when threads are reused in a * thread pool. This is a drop-in replacement for {@link ThreadPoolExecutor} sets MDC data before each task appropriately. * <p/> * Created by jlevy. * Date: 6/14/13 */ public class MdcThreadPoolExecutor extends ThreadPoolExecutor { final private boolean useFixedContext; final private Map<String, Object> fixedContext; /** * Pool where task threads take MDC from the submitting thread. */ public static MdcThreadPoolExecutor newWithInheritedMdc(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue) { return new MdcThreadPoolExecutor(null, corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue); } /** * Pool where task threads take fixed MDC from the thread that creates the pool. */ @SuppressWarnings("unchecked") public static MdcThreadPoolExecutor newWithCurrentMdc(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue) { return new MdcThreadPoolExecutor(MDC.getCopyOfContextMap(), corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue); } /** * Pool where task threads always have a specified, fixed MDC. */ public static MdcThreadPoolExecutor newWithFixedMdc(Map<String, Object> fixedContext, int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue) { return new MdcThreadPoolExecutor(fixedContext, corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue); } private MdcThreadPoolExecutor(Map<String, Object> fixedContext, int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue) { super(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue); this.fixedContext = fixedContext; useFixedContext = (fixedContext != null); } @SuppressWarnings("unchecked") private Map<String, Object> getContextForTask() { return useFixedContext ? fixedContext : MDC.getCopyOfContextMap(); } /** * All executions will have MDC injected. {@code ThreadPoolExecutor}'s submission methods ({@code submit()} etc.) * all delegate to this. */ @Override public void execute(Runnable command) { super.execute(wrap(command, getContextForTask())); } public static Runnable wrap(final Runnable runnable, final Map<String, Object> context) { return new Runnable() { @Override public void run() { Map previous = MDC.getCopyOfContextMap(); if (context == null) { MDC.clear(); } else { MDC.setContextMap(context); } try { runnable.run(); } finally { if (previous == null) { MDC.clear(); } else { MDC.setContextMap(previous); } } } }; } }
多線程日志追蹤
主要目的是記錄工作中的一些編程思想和細節,以便後來查閱。
1.問題描述
由於項目中設計高並發內容,涉及到一個線程創建多個子線程的情況。 那麼,如何跟蹤日志,識別子線程是由哪個主線程創建的,屬於哪個request請求。
例如, 在現有項目中,一個設備信息上傳的請求(包括基本數據和異常數據兩種數據),然後主線程創建兩個子線程,來處理基本數據和異常數據。
簡化代碼如下:
public class mainApp { public static void main(String[] args) { Thread t = new Thread(new Runnable() { @Override public void run() { //接收到一個request System.out.println("[Thread-"+ Thread.currentThread().getId() +"]開始發起請求"); String[] data = {"異常數據","基本數據"}; //創建子線程1,處理異常數據 MThread mThread1 = new MThread(new Runnable() { @Override public void run() { System.out.println("[Thread-"+ Thread.currentThread().getId() +"]處理瞭" + data[0]); } }); 創建子線程2,處理普通數據 MThread mThread2 = new MThread(new Runnable() { @Override public void run() { System.out.println("[Thread-"+ Thread.currentThread().getId() +"]處理瞭" + data[1]); } }); new Thread(mThread1).start(); new Thread(mThread2).start(); } }); t.start(); } } class MThread implements Runnable { private Runnable r; public MThread(Runnable r) { this.r = r; } @Override public void run() { r.run(); } }
運行結果如下:
一個請求有三個線程,如果有多個請求,運行結果如下:
從日志中無法看出他們之間的所屬關系(判斷不出來他們是否是處理同一個request請求的)。如果某一個線程出現問題,我們也很難快速定位是哪個請求的處理結果。
2. 代理實現日志追蹤
因此,我們使用MDC來在日志中增加traceId(同一個請求的多個線程擁有同一個traceId)。
思路如下:
1. 在request進來的時候, 利用AOP為每個request創建一個traceId(保證每個request的traceId不同, 同一個request的traceId相同)
2. 創建子線程的時候, 將traceId通過動態代理的方式,傳遞到子線程中
public class mainApp { public static void main(String[] args) { Runnable runnable = new Runnable() { @Override public void run() { //AOP 生成一個traceId MDC.put("traceId", UUID.randomUUID().toString().replace("-", "")); //接收到一個request System.out.println("[Thread-"+ Thread.currentThread().getId() +"]traceId["+ MDC.get("traceId") +"]開始發起請求"); String[] data = {"異常數據","基本數據"}; MThread mThread1 = new MThread(new Runnable() { @Override public void run() { System.out.println("[Thread-"+ Thread.currentThread().getId() +"]traceId["+ MDC.get("traceId") +"]處理瞭" + data[0]); } }, MDC.getCopyOfContextMap()); MThread mThread2 = new MThread(new Runnable() { @Override public void run() { System.out.println("[Thread-"+ Thread.currentThread().getId() +"]traceId["+ MDC.get("traceId") +"]處理瞭" + data[1]); } }, MDC.getCopyOfContextMap()); new Thread(mThread1).start(); new Thread(mThread2).start(); } }; new Thread(runnable).start(); new Thread(runnable).start(); } } class MThread implements Runnable { private Runnable r; public MThread(Runnable r, Map<String, String> parentThreadMap) { LogProxy logProxy = new LogProxy(r, parentThreadMap); Runnable rProxy = (Runnable) Proxy.newProxyInstance(r.getClass().getClassLoader(), r.getClass().getInterfaces(), logProxy); this.r = rProxy; } @Override public void run() { r.run(); } } //日志代理 class LogProxy implements InvocationHandler { private Runnable r; private Map<String, String> parentThreadMap; public LogProxy(Runnable r, Map<String, String> parentThreadMap) { this.r = r; this.parentThreadMap = parentThreadMap; } @Override public Object invoke(Object proxy, Method method, Object[] args) throws Throwable { if (method.getName().equals("run")) { MDC.setContextMap(parentThreadMap); } return method.invoke(r, args); } }
運行結果如下:
兩個請求, 同一個請求的traceId相同,不同請求的traceId不同。 完美實現多線程的日志追蹤。
實際WEB項目中,隻需要在logback日志配置文件中,
logging.pattern.console參數增[%X{traceId}]即可在LOGGER日志中打印traceId的信息。
以上為個人經驗,希望能給大傢一個參考,也希望大傢多多支持WalkonNet。
推薦閱讀:
- 淺談Java ThreadPoolExecutor的使用
- Java並發編程面試之線程池
- 簡單聊一聊Java線程池ThreadPoolExecutor
- Java線程池高頻面試題總結
- 淺談為什麼阿裡巴巴要禁用Executors創建線程池