基於Zookeeper實現分佈式鎖詳解

1、什麼是Zookeeper?

Zookeeper是一個分佈式的,開源的分佈式應用程序協調服務,是Hadoop和hbase的重要組件。

引用官網的圖例:

在這裡插入圖片描述

特征:

  1. zookeeper的數據機構是一種節點樹的數據結構,zNode是基本的單位,znode是一種和unix文件系統相似的節點,可以往這個節點存儲或向這個節點獲取數據
  2. 通過客戶端可以對znode進行數據操作,還可以註冊watcher監控znode的改變

2、Zookeeper節點類型

  • 持久節點(Persistent)
  • 持久順序節點(Persistent_Sequential)
  • 臨時節點(Ephemeral)
  • 臨時順序節點(Ephemeral_Sequential)

3、Zookeeper環境搭建

下載zookeeper,官網鏈接,https://zookeeper.apache.org/releases.html#download,去官網找到對應的軟件下載到本地

修改配置文件,${ZOOKEEPER_HOME}\conf,找到zoo_sample.cfg文件,先備份一份,另外一份修改為zoo.cfg

在這裡插入圖片描述

解壓後點擊zkServer.cmd運行服務端:

在這裡插入圖片描述

4、Zookeeper基本使用

在cmd窗口或者直接在idea編輯器裡的terminal輸入命令:

zkCli.cmd -server 127.0.0.1:2181

在這裡插入圖片描述

輸入命令help查看幫助信息:

ZooKeeper -server host:port -client-configuration properties-file cmd args
        addWatch [-m mode] path # optional mode is one of [PERSISTENT, PERSISTENT_RECURSIVE] - default is PERSISTENT_RECURSIVE
        addauth scheme auth
        close
        config [-c] [-w] [-s]
        connect host:port
        create [-s] [-e] [-c] [-t ttl] path [data] [acl]
        delete [-v version] path
        deleteall path [-b batch size]
        delquota [-n|-b|-N|-B] path
        get [-s] [-w] path
        getAcl [-s] path
        getAllChildrenNumber path
        getEphemerals path
        history
        listquota path
        ls [-s] [-w] [-R] path
        printwatches on|off
        quit
        reconfig [-s] [-v version] [[-file path] | [-members serverID=host:port1:port2;port3[,...]*]] | [-add serverId=host:port1:port2;port3[,...]]* [-remove serverId[,...]*]
        redo cmdno
        removewatches path [-c|-d|-a] [-l]
        set [-s] [-v version] path data
        setAcl [-s] [-v version] [-R] path acl
        setquota -n|-b|-N|-B val path
        stat [-w] path
        sync path
        version
        whoami

create [-s] [-e] [-c] [-t ttl] path [data] [acl]-s表示順序節點,-e表示臨時節點,若不指定表示持久節點,acl是來進行權限控制的

[zk: 127.0.0.1:2181(CONNECTED) 1] create -s /zk-test 0
Created /zk-test0000000000

查看

[zk: 127.0.0.1:2181(CONNECTED) 4] ls /
[zk-test0000000000, zookeeper]

設置修改節點數據

set /zk-test 123

獲取節點數據

get /zk-test

ps,zookeeper命令詳情查看help幫助文檔,也可以去官網看看文檔

ok,然後java寫個例子,進行watcher監聽

package com.example.concurrent.zkSample;

import org.I0Itec.zkclient.IZkDataListener;
import org.I0Itec.zkclient.ZkClient;

/**
 * <pre>
 *      Zookeeper 例子
 * </pre>
 *
 * <pre>
 * @author mazq
 * 修改記錄
 *    修改後版本:     修改人:  修改日期: 2021/12/09 16:57  修改內容:
 * </pre>
 */
public class ZookeeperSample {

    public static void main(String[] args) {
        ZkClient client = new ZkClient("localhost:2181");
        client.setZkSerializer(new MyZkSerializer());
        client.subscribeDataChanges("/zk-test", new IZkDataListener() {
            @Override
            public void handleDataChange(String dataPath, Object data) throws Exception {
                System.out.println("監聽到節點數據改變!");
            }

            @Override
            public void handleDataDeleted(String dataPath) throws Exception {
                System.out.println("監聽到節點數據被刪除瞭");
            }
        });

        try {
            Thread.sleep(1000 * 60 * 2);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }
}

5、Zookeeper應用場景

Zookeeper有什麼典型的應用場景:

  1. 註冊中心(Dubbo)
  2. 命名服務
  3. Master選舉
  4. 集群管理
  5. 分佈式隊列
  6. 分佈式鎖

6、Zookeeper分佈式鎖

Zookeeper適合用來做分佈式鎖,然後具體實現是利用什麼原理?我們知道zookeeper是類似於unix的文件系統,文件系統我們也知道在一個文件夾下面,會有文件名稱不能一致的特性的,也就是互斥的特性。同樣zookeeper也有這個特性,在同個znode節點下面,子節點命名不能重復。所以利用這個特性可以來實現分佈式鎖

業務場景:在高並發的情況下面進行訂單場景,這是一個典型的電商場景

在這裡插入圖片描述

自定義的Zookeeper序列化類:

package com.example.concurrent.zkSample;


import org.I0Itec.zkclient.exception.ZkMarshallingError;
import org.I0Itec.zkclient.serialize.ZkSerializer;

import java.io.UnsupportedEncodingException;

public class MyZkSerializer implements ZkSerializer {

    private String charset = "UTF-8";

    @Override
    public byte[] serialize(Object o) throws ZkMarshallingError {
        return String.valueOf(o).getBytes();
    }

    @Override
    public Object deserialize(byte[] bytes) throws ZkMarshallingError {
        try {
            return new String(bytes , charset);
        } catch (UnsupportedEncodingException e) {
            throw new ZkMarshallingError();
        }
    }
}

訂單編號生成器類,因為SimpleDateFormat是線程不安全的,所以還是要加上ThreadLocal

package com.example.concurrent.zkSample;

import java.text.DateFormat;
import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.concurrent.atomic.AtomicInteger;

public class OrderCodeGenerator {

    private static final String DATE_FORMAT = "yyyyMMddHHmmss";
    private static AtomicInteger ai  = new AtomicInteger(0);
    private static int i = 0;

    private static ThreadLocal<SimpleDateFormat> threadLocal = new ThreadLocal<SimpleDateFormat>() {
        @Override
        protected SimpleDateFormat initialValue() {
            return new SimpleDateFormat(DATE_FORMAT);
        }
    };

    public static DateFormat getDateFormat() {
        return (DateFormat) threadLocal.get();
    }

    public static String generatorOrderCode() {
        try {
            return getDateFormat().format(new Date(System.currentTimeMillis()))
                    + i++;
        } finally {
            threadLocal.remove();
        }
    }


}

pom.xml加上zookeeper客戶端的配置:

<dependency>
    <groupId>com.101tec</groupId>
    <artifactId>zkclient</artifactId>
    <version>0.10</version>
</dependency>

實現一個zookeeper分佈式鎖,思路是獲取節點,這個是多線程競爭的,能獲取到鎖,也就是創建節點成功,就執行業務,其它搶不到鎖的線程,阻塞等待,註冊watcher監聽鎖是否釋放瞭,釋放瞭,取消註冊watcher,繼續搶鎖

在這裡插入圖片描述

package com.example.concurrent.zkSample;


import lombok.extern.slf4j.Slf4j;
import org.I0Itec.zkclient.IZkDataListener;
import org.I0Itec.zkclient.ZkClient;
import org.I0Itec.zkclient.exception.ZkNodeExistsException;

import java.util.concurrent.CountDownLatch;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;

@Slf4j
public class ZKDistributeLock implements Lock {

    private String localPath;
    private ZkClient zkClient;

    ZKDistributeLock(String localPath) {
        super();
        this.localPath = localPath;
        zkClient = new ZkClient("localhost:2181");
        zkClient.setZkSerializer(new MyZkSerializer());

    }

    @Override
    public void lock() {
        while (!tryLock()) {
            waitForLock();
        }
    }

    private void waitForLock() {
        // 創建countdownLatch協同
        CountDownLatch countDownLatch = new CountDownLatch(1);

        // 註冊watcher監聽
        IZkDataListener listener = new IZkDataListener() {
            @Override
            public void handleDataChange(String path, Object o) throws Exception {
                //System.out.println("zookeeper data has change!!!");
            }

            @Override
            public void handleDataDeleted(String s) throws Exception {
                // System.out.println("zookeeper data has delete!!!");
                // 監聽到鎖釋放瞭,釋放線程
                countDownLatch.countDown();
            }
        };
        zkClient.subscribeDataChanges(localPath , listener);

        // 線程等待
        if (zkClient.exists(localPath)) {
            try {
                countDownLatch.await();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }

        // 取消註冊
        zkClient.unsubscribeDataChanges(localPath , listener);

    }

    @Override
    public void unlock() {
        zkClient.delete(localPath);
    }

    @Override
    public boolean tryLock() {
        try {
            zkClient.createEphemeral(localPath);
        } catch (ZkNodeExistsException e) {
            return false;
        }
        return true;
    }

    @Override
    public boolean tryLock(long time, TimeUnit unit) throws InterruptedException {
        return false;
    }

    @Override
    public void lockInterruptibly() throws InterruptedException {
    }

    @Override
    public Condition newCondition() {
        return null;
    }
}

訂單服務api

package com.example.concurrent.zkSample;


public interface OrderService {
    void createOrder();
}

訂單服務實現類,加上zookeeper分佈式鎖

package com.example.concurrent.zkSample;

import java.util.concurrent.locks.Lock;


public class OrderServiceInvoker implements OrderService{


    @Override
    public void createOrder() {
        Lock zkLock = new ZKDistributeLock("/zk-test");
        //Lock zkLock = new ZKDistributeImproveLock("/zk-test");
        String orderCode = null;
        try {
            zkLock.lock();
            orderCode = OrderCodeGenerator.generatorOrderCode();

        } finally {
            zkLock.unlock();
        }
        System.out.println(String.format("thread name : %s , orderCode : %s" ,
                Thread.currentThread().getName(),
                orderCode));
    }

}

因為搭建分佈式環境比較繁瑣,所以這裡使用juc裡的並發協同工具類,CyclicBarrier模擬多線程並發的場景,模擬分佈式環境的高並發場景

package com.example.concurrent.zkSample;


import java.util.concurrent.BrokenBarrierException;
import java.util.concurrent.CyclicBarrier;

public class ConcurrentDistributeTest {

    public static void main(String[] args) {
        // 多線程數
        int threadSize = 30;
        // 創建多線程循環屏障
        CyclicBarrier cyclicBarrier = new CyclicBarrier(threadSize , ()->{
            System.out.println("準備完成!");
        }) ;

        // 模擬分佈式集群的場景
        for (int i = 0 ; i < threadSize ; i ++) {
            new Thread(()->{
                OrderService orderService = new OrderServiceInvoker();
                // 所有線程都等待
                try {
                    cyclicBarrier.await();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                } catch (BrokenBarrierException e) {
                    e.printStackTrace();
                }
                // 模擬並發請求
                orderService.createOrder();
            }).start();
        }
    }
}

跑多幾次,沒有發現訂單號重復的情況,分佈式鎖還是有點效果的

thread name : Thread-6 , orderCode : 202112100945110

thread name : Thread-1 , orderCode : 202112100945111

thread name : Thread-13 , orderCode : 202112100945112

thread name : Thread-11 , orderCode : 202112100945113

thread name : Thread-14 , orderCode : 202112100945114

thread name : Thread-0 , orderCode : 202112100945115

thread name : Thread-8 , orderCode : 202112100945116

thread name : Thread-17 , orderCode : 202112100945117

thread name : Thread-10 , orderCode : 202112100945118

thread name : Thread-5 , orderCode : 202112100945119

thread name : Thread-2 , orderCode : 2021121009451110

thread name : Thread-16 , orderCode : 2021121009451111

thread name : Thread-19 , orderCode : 2021121009451112

thread name : Thread-4 , orderCode : 2021121009451113

thread name : Thread-18 , orderCode : 2021121009451114

thread name : Thread-3 , orderCode : 2021121009451115

thread name : Thread-9 , orderCode : 2021121009451116

thread name : Thread-12 , orderCode : 2021121009451117

thread name : Thread-15 , orderCode : 2021121009451118

thread name : Thread-7 , orderCode : 2021121009451219

註釋加鎖的代碼,再加大並發數,模擬一下
package com.example.concurrent.zkSample;

import java.util.concurrent.locks.Lock;

public class OrderServiceInvoker implements OrderService{


    @Override
    public void createOrder() {
        //Lock zkLock = new ZKDistributeLock("/zk-test");
        //Lock zkLock = new ZKDistributeImproveLock("/zk-test");
        String orderCode = null;
        try {
            //zkLock.lock();
            orderCode = OrderCodeGenerator.generatorOrderCode();

        } finally {
            //zkLock.unlock();
        }
        System.out.println(String.format("thread name : %s , orderCode : %s" ,
                Thread.currentThread().getName(),
                orderCode));
    }

}

跑多幾次,發現出現訂單號重復的情況,所以分佈式鎖是可以保證分佈式環境的線程安全的

在這裡插入圖片描述

7、公平式Zookeeper分佈式鎖

上面例子是一種非公平鎖的方式,一旦監聽到鎖釋放瞭,所有線程都會去搶鎖,所以容易出現“驚群效應”:

  • 巨大的服務器性能損耗
  • 網絡沖擊
  • 可能造成宕機

所以,需要改進分佈式鎖,改成一種公平鎖的模式

公平鎖:多個線程按照申請鎖的順序去獲取鎖,線程會在隊列裡排隊,按照順序去獲取鎖。隻有隊列第1個線程才能獲取到鎖,獲取到鎖之後,其它線程都會阻塞等待,等到持有鎖的線程釋放鎖,其它線程才會被喚醒。

非公平鎖:多個線程都會去競爭獲取鎖,獲取不到就進入隊列等待,競爭得到就直接獲取鎖;然後持有鎖的線程釋放鎖之後,所有等待的線程就都會去競爭鎖。

在這裡插入圖片描述

流程圖:

在這裡插入圖片描述

代碼改進:

package com.example.concurrent.zkSample;

import org.I0Itec.zkclient.IZkDataListener;
import org.I0Itec.zkclient.ZkClient;
import org.I0Itec.zkclient.exception.ZkNodeExistsException;

import java.util.Collections;
import java.util.List;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;

public class ZKDistributeImproveLock implements Lock {

    private String localPath;
    private ZkClient zkClient;
    private String currentPath;
    private String beforePath;

    ZKDistributeImproveLock(String localPath) {
        super();
        this.localPath = localPath;
        zkClient = new ZkClient("localhost:2181");
        zkClient.setZkSerializer(new MyZkSerializer());
        if (!zkClient.exists(localPath)) {
            try {
                this.zkClient.createPersistent(localPath);
            } catch (ZkNodeExistsException e) {
            }
        }
    }

    @Override
    public void lock() {
        while (!tryLock()) {
            waitForLock();
        }
    }

    private void waitForLock() {
        CountDownLatch countDownLatch = new CountDownLatch(1);

        // 註冊watcher
        IZkDataListener listener = new IZkDataListener() {
            @Override
            public void handleDataChange(String dataPath, Object data) throws Exception {
            }
            @Override
            public void handleDataDeleted(String dataPath) throws Exception {
                // 監聽到鎖釋放,喚醒線程
                countDownLatch.countDown();
            }
        };
        zkClient.subscribeDataChanges(beforePath, listener);

        // 線程等待
        if (zkClient.exists(beforePath)) {
            try {
                countDownLatch.await();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }

        // 取消註冊
        zkClient.unsubscribeDataChanges(beforePath , listener);

    }

    @Override
    public void unlock() {
        zkClient.delete(this.currentPath);
    }

    @Override
    public boolean tryLock() {
        if (this.currentPath == null) {
            currentPath = zkClient.createEphemeralSequential(localPath +"/" , "123");
        }
        // 獲取Znode節點下面的所有子節點
        List<String> children = zkClient.getChildren(localPath);
        // 列表排序
        Collections.sort(children);
        if (currentPath.equals(localPath + "/" + children.get(0))) { // 當前節點是第1個節點
            return true;
        } else {
            //得到當前的索引號
            int index = children.indexOf(currentPath.substring(localPath.length() + 1));
            //取到前一個
            beforePath = localPath + "/" + children.get(index - 1);
        }
        return false;
    }

    @Override
    public boolean tryLock(long time, TimeUnit unit) throws InterruptedException {
        return false;
    }

    @Override
    public void lockInterruptibly() throws InterruptedException {
    }

    @Override
    public Condition newCondition() {
        return null;
    }
}
 

thread name : Thread-13 , orderCode : 202112100936140

thread name : Thread-3 , orderCode : 202112100936141

thread name : Thread-14 , orderCode : 202112100936142

thread name : Thread-16 , orderCode : 202112100936143

thread name : Thread-1 , orderCode : 202112100936144

thread name : Thread-9 , orderCode : 202112100936145

thread name : Thread-4 , orderCode : 202112100936146

thread name : Thread-5 , orderCode : 202112100936147

thread name : Thread-7 , orderCode : 202112100936148

thread name : Thread-2 , orderCode : 202112100936149

thread name : Thread-17 , orderCode : 2021121009361410

thread name : Thread-15 , orderCode : 2021121009361411

thread name : Thread-0 , orderCode : 2021121009361412

thread name : Thread-10 , orderCode : 2021121009361413

thread name : Thread-18 , orderCode : 2021121009361414

thread name : Thread-19 , orderCode : 2021121009361415

thread name : Thread-8 , orderCode : 2021121009361416

thread name : Thread-12 , orderCode : 2021121009361417

thread name : Thread-11 , orderCode : 2021121009361418

thread name : Thread-6 , orderCode : 2021121009361419

8、zookeeper和Redis鎖對比?

Redis和Zookeeper都可以用來實現分佈式鎖,兩者可以進行對比:

基於Redis實現分佈式鎖

  • 實現比較復雜
  • 存在死鎖的可能
  • 性能比較好,基於內存 ,而且保證的是高可用,redis優先保證的是AP(分佈式CAP理論)

基於Zookeeper實現分佈式鎖

  • 實現相對簡單
  • 可靠性高,因為zookeeper保證的是CP(分佈式CAP理論)
  • 性能相對較好 並發1~2萬左右,並發太高,還是redis性能好

本博客代碼可以在GitHub找到下載鏈接

推薦閱讀: