opencv+mediapipe實現人臉檢測及攝像頭實時示例
單張人臉關鍵點檢測
定義可視化圖像函數
導入三維人臉關鍵點檢測模型
導入可視化函數和可視化樣式
讀取圖像
將圖像模型輸入,獲取預測結果
BGR轉RGB
將RGB圖像輸入模型,獲取預測結果
預測人人臉個數
可視化人臉關鍵點檢測效果
繪制人來臉和重點區域輪廓線,返回annotated_image
繪制人臉輪廓、眼睫毛、眼眶、嘴唇
在三維坐標中分別可視化人臉網格、輪廓、瞳孔
import cv2 as cv import mediapipe as mp from tqdm import tqdm import time import matplotlib.pyplot as plt # 定義可視化圖像函數 def look_img(img): img_RGB=cv.cvtColor(img,cv.COLOR_BGR2RGB) plt.imshow(img_RGB) plt.show() # 導入三維人臉關鍵點檢測模型 mp_face_mesh=mp.solutions.face_mesh # help(mp_face_mesh.FaceMesh) model=mp_face_mesh.FaceMesh( static_image_mode=True,#TRUE:靜態圖片/False:攝像頭實時讀取 refine_landmarks=True,#使用Attention Mesh模型 min_detection_confidence=0.5, #置信度閾值,越接近1越準 min_tracking_confidence=0.5,#追蹤閾值 ) # 導入可視化函數和可視化樣式 mp_drawing=mp.solutions.drawing_utils mp_drawing_styles=mp.solutions.drawing_styles # 讀取圖像 img=cv.imread('img.png') # look_img(img) # 將圖像模型輸入,獲取預測結果 # BGR轉RGB img_RGB=cv.cvtColor(img,cv.COLOR_BGR2RGB) # 將RGB圖像輸入模型,獲取預測結果 results=model.process(img_RGB) # 預測人人臉個數 len(results.multi_face_landmarks) print(len(results.multi_face_landmarks)) # 結果:1 # 可視化人臉關鍵點檢測效果 # 繪制人來臉和重點區域輪廓線,返回annotated_image annotated_image=img.copy() if results.multi_face_landmarks: #如果檢測出人臉 for face_landmarks in results.multi_face_landmarks:#遍歷每一張臉 #繪制人臉網格 mp_drawing.draw_landmarks( image=annotated_image, landmark_list=face_landmarks, connections=mp_face_mesh.FACEMESH_TESSELATION, #landmark_drawing_spec為關鍵點可視化樣式,None為默認樣式(不顯示關鍵點) # landmark_drawing_spec=mp_drawing_styles.DrawingSpec(thickness=1,circle_radius=2,color=[66,77,229]), landmark_drawing_spec=None, connection_drawing_spec=mp_drawing_styles.get_default_face_mesh_tesselation_style() ) #繪制人臉輪廓、眼睫毛、眼眶、嘴唇 mp_drawing.draw_landmarks( image=annotated_image, landmark_list=face_landmarks, connections=mp_face_mesh.FACEMESH_CONTOURS, # landmark_drawing_spec為關鍵點可視化樣式,None為默認樣式(不顯示關鍵點) # landmark_drawing_spec=mp_drawing_styles.DrawingSpec(thickness=1,circle_radius=2,color=[66,77,229]), landmark_drawing_spec=None, connection_drawing_spec=mp_drawing_styles.get_default_face_mesh_tesselation_style() ) #繪制瞳孔區域 mp_drawing.draw_landmarks( image=annotated_image, landmark_list=face_landmarks, connections=mp_face_mesh.FACEMESH_IRISES, # landmark_drawing_spec為關鍵點可視化樣式,None為默認樣式(不顯示關鍵點) landmark_drawing_spec=mp_drawing_styles.DrawingSpec(thickness=1,circle_radius=2,color=[128,256,229]), # landmark_drawing_spec=None, connection_drawing_spec=mp_drawing_styles.get_default_face_mesh_tesselation_style() ) cv.imwrite('test.jpg',annotated_image) look_img(annotated_image) # 在三維坐標中分別可視化人臉網格、輪廓、瞳孔 mp_drawing.plot_landmarks(results.multi_face_landmarks[0],mp_face_mesh.FACEMESH_TESSELATION) mp_drawing.plot_landmarks(results.multi_face_landmarks[0],mp_face_mesh.FACEMESH_CONTOURS) mp_drawing.plot_landmarks(results.multi_face_landmarks[0],mp_face_mesh.FACEMESH_IRISES)
單張圖像人臉檢測
可以通過調用open3d實現3d模型建立,部分代碼與上面類似
import cv2 as cv import mediapipe as mp import numpy as np from tqdm import tqdm import time import matplotlib.pyplot as plt # 定義可視化圖像函數 def look_img(img): img_RGB=cv.cvtColor(img,cv.COLOR_BGR2RGB) plt.imshow(img_RGB) plt.show() # 導入三維人臉關鍵點檢測模型 mp_face_mesh=mp.solutions.face_mesh # help(mp_face_mesh.FaceMesh) model=mp_face_mesh.FaceMesh( static_image_mode=True,#TRUE:靜態圖片/False:攝像頭實時讀取 refine_landmarks=True,#使用Attention Mesh模型 max_num_faces=40, min_detection_confidence=0.2, #置信度閾值,越接近1越準 min_tracking_confidence=0.5,#追蹤閾值 ) # 導入可視化函數和可視化樣式 mp_drawing=mp.solutions.drawing_utils # mp_drawing_styles=mp.solutions.drawing_styles draw_spec=mp_drawing.DrawingSpec(thickness=2,circle_radius=1,color=[223,155,6]) # 讀取圖像 img=cv.imread('../人臉三維關鍵點檢測/dkx.jpg') # width=img1.shape[1] # height=img1.shape[0] # img=cv.resize(img1,(width*10,height*10)) # look_img(img) # 將圖像模型輸入,獲取預測結果 # BGR轉RGB img_RGB=cv.cvtColor(img,cv.COLOR_BGR2RGB) # 將RGB圖像輸入模型,獲取預測結果 results=model.process(img_RGB) # # 預測人人臉個數 # len(results.multi_face_landmarks) # # print(len(results.multi_face_landmarks)) if results.multi_face_landmarks: for face_landmarks in results.multi_face_landmarks: mp_drawing.draw_landmarks( image=img, landmark_list=face_landmarks, connections=mp_face_mesh.FACEMESH_CONTOURS, landmark_drawing_spec=draw_spec, connection_drawing_spec=draw_spec ) else: print('未檢測出人臉') look_img(img) mp_drawing.plot_landmarks(results.multi_face_landmarks[0],mp_face_mesh.FACEMESH_TESSELATION) mp_drawing.plot_landmarks(results.multi_face_landmarks[1],mp_face_mesh.FACEMESH_CONTOURS) mp_drawing.plot_landmarks(results.multi_face_landmarks[1],mp_face_mesh.FACEMESH_IRISES) # 交互式三維可視化 coords=np.array(results.multi_face_landmarks[0].landmark) # print(len(coords)) # print(coords) def get_x(each): return each.x def get_y(each): return each.y def get_z(each): return each.z # 分別獲取所有關鍵點的XYZ坐標 points_x=np.array(list(map(get_x,coords))) points_y=np.array(list(map(get_y,coords))) points_z=np.array(list(map(get_z,coords))) # 將三個方向的坐標合並 points=np.vstack((points_x,points_y,points_z)).T print(points.shape) import open3d point_cloud=open3d.geometry.PointCloud() point_cloud.points=open3d.utility.Vector3dVector(points) open3d.visualization.draw_geometries([point_cloud])
這是建立的3d的可視化模型,可以通過鼠標拖動將其旋轉
攝像頭實時關鍵點檢測
定義可視化圖像函數
導入三維人臉關鍵點檢測模型
導入可視化函數和可視化樣式
讀取單幀函數
主要代碼和上面的圖像類似
import cv2 as cv import mediapipe as mp from tqdm import tqdm import time import matplotlib.pyplot as plt # 導入三維人臉關鍵點檢測模型 mp_face_mesh=mp.solutions.face_mesh # help(mp_face_mesh.FaceMesh) model=mp_face_mesh.FaceMesh( static_image_mode=False,#TRUE:靜態圖片/False:攝像頭實時讀取 refine_landmarks=True,#使用Attention Mesh模型 max_num_faces=5,#最多檢測幾張人臉 min_detection_confidence=0.5, #置信度閾值,越接近1越準 min_tracking_confidence=0.5,#追蹤閾值 ) # 導入可視化函數和可視化樣式 mp_drawing=mp.solutions.drawing_utils mp_drawing_styles=mp.solutions.drawing_styles # 處理單幀的函數 def process_frame(img): #記錄該幀處理的開始時間 start_time=time.time() img_RGB=cv.cvtColor(img,cv.COLOR_BGR2RGB) results=model.process(img_RGB) if results.multi_face_landmarks: for face_landmarks in results.multi_face_landmarks: # mp_drawing.draw_detection( # image=img, # landmarks_list=face_landmarks, # connections=mp_face_mesh.FACEMESH_TESSELATION, # landmarks_drawing_spec=None, # landmarks_drawing_spec=mp_drawing_styles.get_default_face_mesh_tesselation_style() # ) # 繪制人臉網格 mp_drawing.draw_landmarks( image=img, landmark_list=face_landmarks, connections=mp_face_mesh.FACEMESH_TESSELATION, # landmark_drawing_spec為關鍵點可視化樣式,None為默認樣式(不顯示關鍵點) # landmark_drawing_spec=mp_drawing_styles.DrawingSpec(thickness=1,circle_radius=2,color=[66,77,229]), landmark_drawing_spec=None, connection_drawing_spec=mp_drawing_styles.get_default_face_mesh_tesselation_style() ) # 繪制人臉輪廓、眼睫毛、眼眶、嘴唇 mp_drawing.draw_landmarks( image=img, landmark_list=face_landmarks, connections=mp_face_mesh.FACEMESH_CONTOURS, # landmark_drawing_spec為關鍵點可視化樣式,None為默認樣式(不顯示關鍵點) # landmark_drawing_spec=mp_drawing_styles.DrawingSpec(thickness=1,circle_radius=2,color=[66,77,229]), landmark_drawing_spec=None, connection_drawing_spec=mp_drawing_styles.get_default_face_mesh_tesselation_style() ) # 繪制瞳孔區域 mp_drawing.draw_landmarks( image=img, landmark_list=face_landmarks, connections=mp_face_mesh.FACEMESH_IRISES, # landmark_drawing_spec為關鍵點可視化樣式,None為默認樣式(不顯示關鍵點) # landmark_drawing_spec=mp_drawing_styles.DrawingSpec(thickness=1, circle_radius=2, color=[0, 1, 128]), landmark_drawing_spec=None, connection_drawing_spec=mp_drawing_styles.get_default_face_mesh_tesselation_style()) else: img = cv.putText(img, 'NO FACE DELECTED', (25 , 50 ), cv.FONT_HERSHEY_SIMPLEX, 1.25, (218, 112, 214), 1, 8) #記錄該幀處理完畢的時間 end_time=time.time() #計算每秒處理圖像的幀數FPS FPS=1/(end_time-start_time) scaler=1 img=cv.putText(img,'FPS'+str(int(FPS)),(25*scaler,100*scaler),cv.FONT_HERSHEY_SIMPLEX,1.25*scaler,(0,0,255),1,8) return img # 調用攝像頭 cap=cv.VideoCapture(0) cap.open(0) # 無限循環,直到break被觸發 while cap.isOpened(): success,frame=cap.read() # if not success: # print('ERROR') # break frame=process_frame(frame) #展示處理後的三通道圖像 cv.imshow('my_window',frame) if cv.waitKey(1) &0xff==ord('q'): break cap.release() cv.destroyAllWindows()
到此這篇關於opencv+mediapipe實現人臉檢測及攝像頭實時的文章就介紹到這瞭,更多相關opencv 人臉檢測及攝像頭實時內容請搜索WalkonNet以前的文章或繼續瀏覽下面的相關文章希望大傢以後多多支持WalkonNet!
推薦閱讀:
- python+mediapipe+opencv實現手部關鍵點檢測功能(手勢識別)
- Python+OpenCV實戰之拖拽虛擬方塊的實現
- Python+OpenCV手勢檢測與識別Mediapipe基礎篇
- 基於Mediapipe+Opencv實現手勢檢測功能
- OpenCV+MediaPipe實現手部關鍵點識別