Spring Boot實戰解決高並發數據入庫之 Redis 緩存+MySQL 批量入庫問題
前言
最近在做閱讀類的業務,需要記錄用戶的PV,UV;
項目狀況:前期嘗試業務階段;
特點:
快速實現(不需要做太重,滿足初期推廣運營即可)快速投入市場去運營
收集用戶的原始數據,三要素:
誰在什麼時間閱讀哪篇文章
提到PV,UV腦海中首先浮現特點:
需要考慮性能(每個客戶每打開一篇文章進行記錄)允許數據有較小誤差(少部分數據丟失)
架構設計
架構圖:
時序圖
記錄基礎數據MySQL表結構
CREATE TABLE `zh_article_count` ( `id` bigint(20) NOT NULL AUTO_INCREMENT, `bu_no` varchar(32) DEFAULT NULL COMMENT '業務編碼', `customer_id` varchar(32) DEFAULT NULL COMMENT '用戶編碼', `type` int(2) DEFAULT '0' COMMENT '統計類型:0APP內文章閱讀', `article_no` varchar(32) DEFAULT NULL COMMENT '文章編碼', `read_time` datetime DEFAULT NULL COMMENT '閱讀時間', `create_time` datetime DEFAULT CURRENT_TIMESTAMP COMMENT '創建時間', `update_time` datetime DEFAULT CURRENT_TIMESTAMP COMMENT '更新時間', `param1` int(2) DEFAULT NULL COMMENT '預留字段1', `param2` int(4) DEFAULT NULL COMMENT '預留字段2', `param3` int(11) DEFAULT NULL COMMENT '預留字段3', `param4` varchar(20) DEFAULT NULL COMMENT '預留字段4', `param5` varchar(32) DEFAULT NULL COMMENT '預留字段5', `param6` varchar(64) DEFAULT NULL COMMENT '預留字段6', PRIMARY KEY (`id`) USING BTREE, UNIQUE KEY `uk_zh_article_count_buno` (`bu_no`), KEY `key_zh_article_count_csign` (`customer_id`), KEY `key_zh_article_count_ano` (`article_no`), KEY `key_zh_article_count_rtime` (`read_time`) ) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COMMENT='文章閱讀統計表';
技術實現方案
SpringBoot
Redis
MySQL
代碼實現
完整代碼(GitHub,歡迎大傢Star,Fork,Watch)
https://github.com/dangnianchuntian/springboot
主要代碼展示
Controller
/* * Copyright (c) 2020. [email protected] All Rights Reserved. * 項目名稱:Spring Boot實戰解決高並發數據入庫: Redis 緩存+MySQL 批量入庫 * 類名稱:ArticleCountController.java * 創建人:張晗 * 聯系方式:[email protected] * 開源地址: https://github.com/dangnianchuntian/springboot * 博客地址: https://zhanghan.blog.csdn.net */ package com.zhanghan.zhredistodb.controller; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.validation.annotation.Validated; import org.springframework.web.bind.annotation.RequestBody; import org.springframework.web.bind.annotation.RequestMapping; import org.springframework.web.bind.annotation.RequestMethod; import org.springframework.web.bind.annotation.RestController; import com.zhanghan.zhredistodb.controller.request.PostArticleViewsRequest; import com.zhanghan.zhredistodb.service.ArticleCountService; @RestController public class ArticleCountController { @Autowired private ArticleCountService articleCountService; /** * 記錄用戶訪問記錄 */ @RequestMapping(value = "/post/article/views", method = RequestMethod.POST) public Object postArticleViews(@RequestBody @Validated PostArticleViewsRequest postArticleViewsRequest) { return articleCountService.postArticleViews(postArticleViewsRequest); } /** * 批量將緩存中的數據同步到MySQL(模擬定時任務操作) */ @RequestMapping(value = "/post/batch", method = RequestMethod.POST) public Object postBatch() { return articleCountService.postBatchRedisToDb(); }
Service
/* * Copyright (c) 2020. [email protected] All Rights Reserved. * 項目名稱:Spring Boot實戰解決高並發數據入庫: Redis 緩存+MySQL 批量入庫 * 類名稱:ArticleCountServiceImpl.java * 創建人:張晗 * 聯系方式:[email protected] * 開源地址: https://github.com/dangnianchuntian/springboot * 博客地址: https://zhanghan.blog.csdn.net */ package com.zhanghan.zhredistodb.service.impl; import java.util.ArrayList; import java.util.Date; import java.util.List; import java.util.stream.Collectors; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.beans.factory.annotation.Value; import org.springframework.data.redis.core.RedisTemplate; import org.springframework.stereotype.Service; import org.springframework.util.CollectionUtils; import com.alibaba.fastjson.JSON; import com.zhanghan.zhredistodb.controller.request.PostArticleViewsRequest; import com.zhanghan.zhredistodb.dto.ArticleCountDto; import com.zhanghan.zhredistodb.mybatis.mapper.XArticleCountMapper; import com.zhanghan.zhredistodb.service.ArticleCountService; import com.zhanghan.zhredistodb.util.wrapper.WrapMapper; import cn.hutool.core.util.IdUtil; @Service public class ArticleCountServiceImpl implements ArticleCountService { private static Logger logger = LoggerFactory.getLogger(ArticleCountServiceImpl.class); @Autowired private RedisTemplate<String, String> strRedisTemplate; private XArticleCountMapper xArticleCountMapper; @Value("${zh.article.count.redis.key:zh}") private String zhArticleCountRedisKey; @Value("#{T(java.lang.Integer).parseInt('${zh..article.read.num:3}')}") private Integer articleReadNum; /** * 記錄用戶訪問記錄 */ @Override public Object postArticleViews(PostArticleViewsRequest postArticleViewsRequest) { ArticleCountDto articleCountDto = new ArticleCountDto(); articleCountDto.setBuNo(IdUtil.simpleUUID()); articleCountDto.setCustomerId(postArticleViewsRequest.getCustomerId()); articleCountDto.setArticleNo(postArticleViewsRequest.getArticleNo()); articleCountDto.setReadTime(new Date()); String strArticleCountDto = JSON.toJSONString(articleCountDto); strRedisTemplate.opsForList().rightPush(zhArticleCountRedisKey, strArticleCountDto); return WrapMapper.ok(); } * 批量將緩存中的數據同步到MySQL public Object postBatchRedisToDb() { Date now = new Date(); while (true) { List<String> strArticleCountList = strRedisTemplate.opsForList().range(zhArticleCountRedisKey, 0, articleReadNum); if (CollectionUtils.isEmpty(strArticleCountList)) { return WrapMapper.ok(); } List<ArticleCountDto> articleCountDtoList = new ArrayList<>(); strArticleCountList.stream().forEach(x -> { ArticleCountDto articleCountDto = JSON.parseObject(x, ArticleCountDto.class); articleCountDtoList.add(articleCountDto); }); //過濾出本次定時任務之前的緩存中數據,防止死循環 List<ArticleCountDto> beforeArticleCountDtoList = articleCountDtoList.stream().filter(x -> x.getReadTime() .before(now)).collect(Collectors.toList()); if (CollectionUtils.isEmpty(beforeArticleCountDtoList)) { xArticleCountMapper.batchAdd(beforeArticleCountDtoList); Integer delSize = beforeArticleCountDtoList.size(); strRedisTemplate.opsForList().trim(zhArticleCountRedisKey, delSize, -1L); } }
測試
模擬用戶請求訪問後臺(多次請求)
查看緩存中訪問數據
模擬定時任務將緩存中數據同步到DB中
這時查看緩存中的數據已經沒瞭
查看數據庫表結構
總結
- 項目中定時任務
- 問演示方便用http代替定時任務調度;實際項目中用XXL-job,參考:定時任務的選型及改造
- 定時任務項目中用redis鎖防止並發(定時任務調度端多次調度等),參考:Redis實現計數器—接口防刷—升級版(Redis+Lua)
- 後期運營數據可以從閱讀記錄表中拉數據進行相關分析
- 訪問量大:可以將MySQL中的閱讀記錄表定時遷移走(MySQL建歷史表,MongoDB等)
到此這篇關於Spring Boot實戰解決高並發數據入庫之 Redis 緩存+MySQL 批量入庫的文章就介紹到這瞭,更多相關Spring Boot高並發數據入庫內容請搜索WalkonNet以前的文章或繼續瀏覽下面的相關文章希望大傢以後多多支持WalkonNet!
推薦閱讀:
- JavaWeb倉庫管理系統詳解
- 一文搞清楚MySQL count(*)、count(1)、count(col)區別
- SpringBoot詳解整合Redis緩存方法
- MySQL巧用sum、case和when優化統計查詢
- Mysql using 用法示例詳解