Python matplotlib可視化之繪制韋恩圖
本文速覽
2組數據venn
3組數據venn
4組數據venn
5組數據venn圖
6組數據venn
python中Matplotlib並沒有現成的函數可直接繪制venn圖, 不過已經有前輩基於matplotlib.patches及matplotlib.path開發瞭兩個輪子:
matplotlib_venn【2~3組數據,比較多博客介紹】:https://github.com/konstantint/matplotlib-venn
pyvenn【2~6組數據】:https://github.com/tctianchi/pyvenn
1、 matplotlib_venn
該模塊包含'venn2', 'venn2_circles', 'venn3', 'venn3_circles'四個關鍵函數,這裡主要詳細介紹'venn2','venn3'同理。
(1)2組數據venn圖
matplotlib_venn.venn2(subsets, set_labels=('A', 'B'), set_colors=('r', 'g'), alpha=0.4, normalize_to=1.0, ax=None, subset_label_formatter=None)
繪圖數據格式
subsets參數接收繪圖數據集,以下5種方式均可以,註意細微異同。
#導入依賴packages import matplotlib.pyplot as plt from matplotlib_venn import venn2,venn2_circles#記得安裝matplotlib_venn(pip install matplotlib_venn 或者conda install matplotlib_venn) # subsets參數 #繪圖數據的格式,以下5種方式均可以,註意異同 subset = [[{1,2,3},{1,2,4}],#列表list(集合1,集合2) ({1,2,3},{1,2,4}),#元組tuple(集合1,集合2) {'10': 1, '01': 1, '11': 2},#字典dict(A獨有,B獨有,AB共有) (3, 3, 2),####元組tuple(A有,B有,AB共有),註意和其它幾種方式的異同點 [3,3,2]#列表list(A有,B有,AB共有) ] for i in subset: my_dpi=100 plt.figure(figsize=(500/my_dpi, 500/my_dpi), dpi=my_dpi) g=venn2(subsets=i)#默認數據繪制venn圖,隻需傳入繪圖數據 plt.title('subsets=%s'%str(i)) plt.show()
一些簡單參數介紹
my_dpi=150 plt.figure(figsize=(580/my_dpi, 580/my_dpi), dpi=my_dpi)#控制圖尺寸的同時,使圖高分辨率(高清)顯示 g=venn2(subsets = [{1,2,3},{1,2,4}], #繪圖數據集 set_labels = ('Label 1', 'Label 2'), #設置組名 set_colors=("#098154","#c72e29"),#設置圈的顏色,中間顏色不能修改 alpha=0.6,#透明度 normalize_to=1.0,#venn圖占據figure的比例,1.0為占滿 ) plt.show()
所有圈外框屬性設置
my_dpi=150 plt.figure(figsize=(580/my_dpi, 580/my_dpi), dpi=my_dpi) g=venn2(subsets = [{1,2,3},{1,2,4}], set_labels = ('Label 1', 'Label 2'), set_colors=("#098154","#c72e29"), alpha=0.6, normalize_to=1.0, ) g=venn2_circles(subsets = [{1,2,3},{1,2,4}], linestyle='--', linewidth=0.8, color="black"#外框線型、線寬、顏色 ) plt.show()
單個圈特性設置
g.get_patch_by_id('10')返回一個matplotlib.patches.PathPatch對象,有諸多參數可個性化修改 ,詳細見matplotlib官網。
my_dpi=150 plt.figure(figsize=(550/my_dpi, 550/my_dpi), dpi=my_dpi) g=venn2(subsets = [{1,2,3},{1,2,4}], set_labels = ('Label 1', 'Label 2'), set_colors=("#098154","#c72e29"), alpha=0.6, normalize_to=1.0, ) g.get_patch_by_id('10').set_edgecolor('red')#左圈外框顏色 g.get_patch_by_id('10').set_linestyle('--')#左圈外框線型 g.get_patch_by_id('10').set_linewidth(2)#左圈外框線寬 g.get_patch_by_id('01').set_edgecolor('green')#右圈外框顏色 g.get_patch_by_id('11').set_edgecolor('blue')#中間圈外框顏色 plt.show()
單個圈文本設置
g.get_label_by_id('10') 返回一個matplotlib.text.Text對象,有諸多參數可個性化修改 ,詳細見matplotlib官網。
my_dpi=150 plt.figure(figsize=(600/my_dpi, 600/my_dpi), dpi=my_dpi) g=venn2(subsets = [{1,2,3},{1,2,4}], set_labels = ('Label 1', 'Label 2'), set_colors=("#098154","#c72e29"), alpha=0.6, normalize_to=1.0, ) g.get_label_by_id('10').set_fontfamily('Microsoft YaHei')#左圈中1的字體設置為微軟雅黑 g.get_label_by_id('10').set_fontsize(20)#1的大小設置為20 g.get_label_by_id('10').set_color('r')#1的顏色 g.get_label_by_id('10').set_rotation(45)#1的傾斜度
添加額外註釋
my_dpi=150 plt.figure(figsize=(580/my_dpi, 580/my_dpi), dpi=my_dpi)#控制圖尺寸的同時,使圖高分辨率(高清)顯示 g=venn2(subsets = [{1,2,3},{1,2,4}], #繪圖數據集 set_labels = ('Label 1', 'Label 2'), #設置組名 set_colors=("#098154","#c72e29"),#設置圈的顏色,中間顏色不能修改 alpha=0.6,#透明度 normalize_to=1.0,#venn圖占據figure的比例,1.0為占滿 ) plt.annotate('I like this green part!', color='#098154', xy=g.get_label_by_id('10').get_position() - np.array([0, 0.05]), xytext=(-80,40), ha='center', textcoords='offset points', bbox=dict(boxstyle='round,pad=0.5', fc='#098154', alpha=0.6),#註釋文字底紋 arrowprops=dict(arrowstyle='-|>', connectionstyle='arc3,rad=0.5',color='#098154')#箭頭屬性設置 ) plt.annotate('She like this red part!', color='#c72e29', xy=g.get_label_by_id('01').get_position() + np.array([0, 0.05]), xytext=(80,40), ha='center', textcoords='offset points', bbox=dict(boxstyle='round,pad=0.5', fc='#c72e29', alpha=0.6), arrowprops=dict(arrowstyle='-|>', connectionstyle='arc3,rad=0.5',color='#c72e29') ) plt.annotate('We both dislike this strange part!', color='black', xy=g.get_label_by_id('11').get_position() + np.array([0, 0.05]), xytext=(20,80), ha='center', textcoords='offset points', bbox=dict(boxstyle='round,pad=0.5', fc='grey', alpha=0.6), arrowprops=dict(arrowstyle='-|>', connectionstyle='arc3,rad=-0.5',color='black') ) plt.show()
多子圖繪制venn圖
fig,axs=plt.subplots(1,3, figsize=(10,8),dpi=150) g=venn2(subsets = [{1,2,3},{1,2,4}], set_labels = ('Label 1', 'Label 2'), set_colors=("#098154","#c72e29"), alpha=0.6, normalize_to=1.0, ax=axs[0],#該參數指定 ) g=venn2(subsets = [{1,2,3,4,5,6},{1,2,4,5,6,7,8}], set_labels = ('Label 3', 'Label 4'), set_colors=("#098154","#c72e29"), alpha=0.6, normalize_to=1.0, ax=axs[1], ) g=venn2(subsets = [{0,1,2,3},{1,2,4}], set_labels = ('Label 5', 'Label 6'), set_colors=("#098154","#c72e29"), alpha=0.6, normalize_to=1.0, ax=axs[2], ) plt.show()
(2)3組數據venn圖
matplotlib_venn.venn3(subsets, set_labels=('A', 'B', 'C'), set_colors=('r', 'g', 'b'), alpha=0.4, normalize_to=1.0, ax=None, subset_label_formatter=None)
參數和venn2幾乎一樣,介紹幾個重要參數
基本參數介紹
my_dpi=150 plt.figure(figsize=(600/my_dpi, 600/my_dpi), dpi=my_dpi)#控制圖尺寸的同時,使圖高分辨率(高清)顯示 g=venn3(subsets = [{1,2,3},{1,2,4},{2,6,7}], #傳入三組數據 set_labels = ('Label 1', 'Label 2','Label 3'), #設置組名 set_colors=("#01a2d9", "#31A354", "#c72e29"),#設置圈的顏色,中間顏色不能修改 alpha=0.8,#透明度 normalize_to=1.0,#venn圖占據figure的比例,1.0為占滿 ) plt.show()
個性化設置圖中7部分每一部分
(100, 010, 110, 001, 101, 011, 111)分別代替每一小塊,那麼代替的是那一小塊瞭?
my_dpi=150 plt.figure(figsize=(600/my_dpi, 600/my_dpi), dpi=my_dpi) g=venn3(subsets = [{1,2,3},{1,2,4},{2,6,7}], set_labels = ('Label 1', 'Label 2','Label 3'), set_colors=("#01a2d9", "#31A354", "#c72e29"), alpha=0.8, normalize_to=1.0, ) for i in list('100, 010, 110, 001, 101, 011, 111'.split(', ')): g.get_label_by_id('%s'%i).set_text('%s'%i)#修改每個組分的文本 #然後就可以如同venn2中那樣個性化設置瞭 g.get_label_by_id('110').set_color('red')#1的顏色 g.get_patch_by_id('110').set_edgecolor('red') plt.show()
2、pyvenn
同樣,該庫還是基於matplotlib.patches二次開發;
區別於上文,pyvenn支持2到6組數據;matplotlib_venn更加靈活多變。
pyvenn具有'venn2', 'venn3', 'venn4', 'venn5', 'venn6'五大主要函數,這裡主要介紹venn2,其它同理。
2組數據venn
venn.draw_annotate、venn.draw_text、venn.venn2中的fill()參數非常助於個性化設置。
venn2(labels, names=['A', 'B'], **options) import matplotlib.pyplot as plt #添加pyvenn路徑 import sys sys.path.append(r'path\pyvenn-master') import venn mycolor=[[0.10588235294117647, 0.6196078431372549, 0.4666666666666667,0.6], [0.9058823529411765, 0.1607843137254902, 0.5411764705882353, 0.6]] labels = venn.get_labels([[1,2,3,4,5,6],[1,2,4,5,6,7,8]], fill=['number', 'logic',#開啟每個組分代碼 'percent'#每個組分的百分比 ], ) fig, ax = venn.venn2(labels, names=list('AB'), dpi=96, colors=mycolor,#傳入RPGA色號,直接傳hex色號或者RGB會導致重疊部分被覆蓋 fontsize=15,#控制組名及中間數字大小 ) plt.style.use('seaborn-whitegrid') ax.set_axis_on()#開啟坐標網格線 #ax.set_title('venn2') # 提取plt.annotate部分參數 venn.draw_annotate(fig, ax, x=0.3, y=0.18, #箭頭的位置 textx=0.1, texty=0.05, #箭尾的位置 text='Aoligei!', color='r', #註釋文本屬性 arrowcolor='r',#箭頭的顏色等屬性 ) #添加文本 venn.draw_text(fig, ax, x=0.25, y=0.2, text='number:logic(percent)', fontsize=12, ha='center', va='center')
3組數據venn
labels = venn.get_labels([range(10), range(5, 15), range(3, 8)], fill=['number', 'logic', 'percent' ] ) fig, ax = venn.venn3(labels, names=list('ABC'),dpi=96) fig.show()
4組數據venn
labels = venn.get_labels([range(10), range(5, 15), range(3, 8), range(8, 17)], fill=['number', 'logic', 'percent' ]) fig, ax = venn.venn4(labels, names=list('ABCD')) fig.show()
5組數據venn
labels = venn.get_labels([range(10), range(5, 15), range(3, 8), range(8, 17), range(10, 20)], fill=['number', 'logic', 'percent' ]) fig, ax = venn.venn5(labels, names=list('ABCDEF')) fig.show()
6組數據venn
labels = venn.get_labels([range(10), range(5, 15), range(3, 8), range(8, 17), range(10, 20), range(13, 25)], fill=['number', 'logic','percent']) fig, ax = venn.venn6(labels, names=list('ABCDEF')) fig.show()
以上就是Python matplotlib可視化之繪制韋恩圖的詳細內容,更多關於Python matplotlib韋恩圖的資料請關註WalkonNet其它相關文章!
推薦閱讀:
- Python利用Matplotlib繪制圖表詳解
- Python Matplotlib數據可視化模塊使用詳解
- 手把手教你用Matplotlib實現數據可視化
- matplotlib基本圖形繪制操作實例
- 使用Python matplotlib繪制簡單的柱形圖、折線圖和直線圖