使用SQL實現車流量的計算的示例代碼
卡口轉換率
將數據導入hive,通過SparkSql編寫sql,實現不同業務的數據計算實現,主要講述車輛卡口轉換率,卡口轉化率:主要計算不同卡口下車輛之間的流向,求出之間的轉換率。
1、查出每個地區下每個路段下的車流量
select car, monitor_id, action_time, ROW_NUMBER () OVER (PARTITION by car ORDER by action_time) as n1 FROM traffic.hive_flow_action
此結果做為表1,方便後面錯位連接使用
2、通過錯位連接獲取每輛車的行車記錄
通過表1的結果,與自身進行錯位鏈接,並以車牌為分區,拼接經過卡口的過程
(select t1.car, t1.monitor_id, concat(t1.monitor_id, "->", t2.monitor_id) as way from ( select car, monitor_id, action_time, ROW_NUMBER () OVER (PARTITION by car ORDER by action_time) as n1 FROM traffic.hive_flow_action) t1 left join ( select car, monitor_id, action_time, ROW_NUMBER () OVER (PARTITION by car ORDER by action_time) as n1 FROM traffic.hive_flow_action) t2 on t1.car = t2.car and t1.n1 = t2.n1-1 where t2.action_time is not null)
獲取到每輛車的一個行車記錄,經過的卡口
3、獲取行車過程中的車輛數
獲取卡口1~卡口2,…等的車輛數有哪些,即拿上面的行車記錄字段進行分區在進行統計
(select s1.way, COUNT(1) sumCar from --行車過程 (select t1.car, t1.monitor_id, concat(t1.monitor_id, "->", t2.monitor_id) as way from ( select car, monitor_id, action_time, ROW_NUMBER () OVER (PARTITION by car ORDER by action_time) as n1 FROM traffic.hive_flow_action) t1 left join ( select car, monitor_id, action_time, ROW_NUMBER () OVER (PARTITION by car ORDER by action_time) as n1 FROM traffic.hive_flow_action) t2 on t1.car = t2.car and t1.n1 = t2.n1-1 where t2.action_time is not null)s1 group by way)
4、獲取每個卡口的總車輛數
獲取每個卡口最初的車輛數,方便後面拿行車軌跡車輛數/總車輛數,得出卡口之間的轉換率
select monitor_id , COUNT(1) sumall from traffic.hive_flow_action group by monitor_id
5、求出卡口之間的轉換率
select s2.way, s2.sumCar / s3.sumall zhl from ( select s1.way, COUNT(1) sumCar from --行車過程 ( select t1.car, t1.monitor_id, concat(t1.monitor_id, "->", t2.monitor_id) as way from ( select car, monitor_id, action_time, ROW_NUMBER () OVER (PARTITION by car ORDER by action_time) as n1 FROM traffic.hive_flow_action) t1 left join ( select car, monitor_id, action_time, ROW_NUMBER () OVER (PARTITION by car ORDER by action_time) as n1 FROM traffic.hive_flow_action) t2 on t1.car = t2.car and t1.n1 = t2.n1-1 where t2.action_time is not null)s1 group by way)s2 left join --每個卡口總車數 ( select monitor_id , COUNT(1) sumall from traffic.hive_flow_action group by monitor_id) s3 on split(s2.way, "->")[0]= s3.monitor_id
到此這篇關於使用SQL實現車流量的計算的示例代碼的文章就介紹到這瞭,更多相關SQL 車流量內容請搜索WalkonNet以前的文章或繼續瀏覽下面的相關文章希望大傢以後多多支持WalkonNet!