詳解Python實現圖像分割增強的兩種方法
方法一
import random import numpy as np from PIL import Image, ImageOps, ImageFilter from skimage.filters import gaussian import torch import math import numbers import random class RandomVerticalFlip(object): def __call__(self, img): if random.random() < 0.5: return img.transpose(Image.FLIP_TOP_BOTTOM) return img class DeNormalize(object): def __init__(self, mean, std): self.mean = mean self.std = std def __call__(self, tensor): for t, m, s in zip(tensor, self.mean, self.std): t.mul_(s).add_(m) return tensor class MaskToTensor(object): def __call__(self, img): return torch.from_numpy(np.array(img, dtype=np.int32)).long() class FreeScale(object): def __init__(self, size, interpolation=Image.BILINEAR): self.size = tuple(reversed(size)) # size: (h, w) self.interpolation = interpolation def __call__(self, img): return img.resize(self.size, self.interpolation) class FlipChannels(object): def __call__(self, img): img = np.array(img)[:, :, ::-1] return Image.fromarray(img.astype(np.uint8)) class RandomGaussianBlur(object): def __call__(self, img): sigma = 0.15 + random.random() * 1.15 blurred_img = gaussian(np.array(img), sigma=sigma, multichannel=True) blurred_img *= 255 return Image.fromarray(blurred_img.astype(np.uint8)) # 組合 class Compose(object): def __init__(self, transforms): self.transforms = transforms def __call__(self, img, mask): assert img.size == mask.size for t in self.transforms: img, mask = t(img, mask) return img, mask # 隨機裁剪 class RandomCrop(object): def __init__(self, size, padding=0): if isinstance(size, numbers.Number): self.size = (int(size), int(size)) else: self.size = size self.padding = padding def __call__(self, img, mask): if self.padding > 0: img = ImageOps.expand(img, border=self.padding, fill=0) mask = ImageOps.expand(mask, border=self.padding, fill=0) assert img.size == mask.size w, h = img.size th, tw = self.size if w == tw and h == th: return img, mask if w < tw or h < th: return img.resize((tw, th), Image.BILINEAR), mask.resize((tw, th), Image.NEAREST) x1 = random.randint(0, w - tw) y1 = random.randint(0, h - th) return img.crop((x1, y1, x1 + tw, y1 + th)), mask.crop((x1, y1, x1 + tw, y1 + th)) # 中心裁剪 class CenterCrop(object): def __init__(self, size): if isinstance(size, numbers.Number): self.size = (int(size), int(size)) else: self.size = size def __call__(self, img, mask): assert img.size == mask.size w, h = img.size th, tw = self.size x1 = int(round((w - tw) / 2.)) y1 = int(round((h - th) / 2.)) return img.crop((x1, y1, x1 + tw, y1 + th)), mask.crop((x1, y1, x1 + tw, y1 + th)) class RandomHorizontallyFlip(object): def __call__(self, img, mask): if random.random() < 0.5: return img.transpose(Image.FLIP_LEFT_RIGHT), mask.transpose(Image.FLIP_LEFT_RIGHT) return img, mask class Scale(object): def __init__(self, size): self.size = size def __call__(self, img, mask): assert img.size == mask.size w, h = img.size if (w >= h and w == self.size) or (h >= w and h == self.size): return img, mask if w > h: ow = self.size oh = int(self.size * h / w) return img.resize((ow, oh), Image.BILINEAR), mask.resize((ow, oh), Image.NEAREST) else: oh = self.size ow = int(self.size * w / h) return img.resize((ow, oh), Image.BILINEAR), mask.resize((ow, oh), Image.NEAREST) class RandomSizedCrop(object): def __init__(self, size): self.size = size def __call__(self, img, mask): assert img.size == mask.size for attempt in range(10): area = img.size[0] * img.size[1] target_area = random.uniform(0.45, 1.0) * area aspect_ratio = random.uniform(0.5, 2) w = int(round(math.sqrt(target_area * aspect_ratio))) h = int(round(math.sqrt(target_area / aspect_ratio))) if random.random() < 0.5: w, h = h, w if w <= img.size[0] and h <= img.size[1]: x1 = random.randint(0, img.size[0] - w) y1 = random.randint(0, img.size[1] - h) img = img.crop((x1, y1, x1 + w, y1 + h)) mask = mask.crop((x1, y1, x1 + w, y1 + h)) assert (img.size == (w, h)) return img.resize((self.size, self.size), Image.BILINEAR), mask.resize((self.size, self.size), Image.NEAREST) # Fallback scale = Scale(self.size) crop = CenterCrop(self.size) return crop(*scale(img, mask)) class RandomRotate(object): def __init__(self, degree): self.degree = degree def __call__(self, img, mask): rotate_degree = random.random() * 2 * self.degree - self.degree return img.rotate(rotate_degree, Image.BILINEAR), mask.rotate(rotate_degree, Image.NEAREST) class RandomSized(object): def __init__(self, size): self.size = size self.scale = Scale(self.size) self.crop = RandomCrop(self.size) def __call__(self, img, mask): assert img.size == mask.size w = int(random.uniform(0.5, 2) * img.size[0]) h = int(random.uniform(0.5, 2) * img.size[1]) img, mask = img.resize((w, h), Image.BILINEAR), mask.resize((w, h), Image.NEAREST) return self.crop(*self.scale(img, mask)) class SlidingCropOld(object): def __init__(self, crop_size, stride_rate, ignore_label): self.crop_size = crop_size self.stride_rate = stride_rate self.ignore_label = ignore_label def _pad(self, img, mask): h, w = img.shape[: 2] pad_h = max(self.crop_size - h, 0) pad_w = max(self.crop_size - w, 0) img = np.pad(img, ((0, pad_h), (0, pad_w), (0, 0)), 'constant') mask = np.pad(mask, ((0, pad_h), (0, pad_w)), 'constant', constant_values=self.ignore_label) return img, mask def __call__(self, img, mask): assert img.size == mask.size w, h = img.size long_size = max(h, w) img = np.array(img) mask = np.array(mask) if long_size > self.crop_size: stride = int(math.ceil(self.crop_size * self.stride_rate)) h_step_num = int(math.ceil((h - self.crop_size) / float(stride))) + 1 w_step_num = int(math.ceil((w - self.crop_size) / float(stride))) + 1 img_sublist, mask_sublist = [], [] for yy in range(h_step_num): for xx in range(w_step_num): sy, sx = yy * stride, xx * stride ey, ex = sy + self.crop_size, sx + self.crop_size img_sub = img[sy: ey, sx: ex, :] mask_sub = mask[sy: ey, sx: ex] img_sub, mask_sub = self._pad(img_sub, mask_sub) img_sublist.append(Image.fromarray(img_sub.astype(np.uint8)).convert('RGB')) mask_sublist.append(Image.fromarray(mask_sub.astype(np.uint8)).convert('P')) return img_sublist, mask_sublist else: img, mask = self._pad(img, mask) img = Image.fromarray(img.astype(np.uint8)).convert('RGB') mask = Image.fromarray(mask.astype(np.uint8)).convert('P') return img, mask class SlidingCrop(object): def __init__(self, crop_size, stride_rate, ignore_label): self.crop_size = crop_size self.stride_rate = stride_rate self.ignore_label = ignore_label def _pad(self, img, mask): h, w = img.shape[: 2] pad_h = max(self.crop_size - h, 0) pad_w = max(self.crop_size - w, 0) img = np.pad(img, ((0, pad_h), (0, pad_w), (0, 0)), 'constant') mask = np.pad(mask, ((0, pad_h), (0, pad_w)), 'constant', constant_values=self.ignore_label) return img, mask, h, w def __call__(self, img, mask): assert img.size == mask.size w, h = img.size long_size = max(h, w) img = np.array(img) mask = np.array(mask) if long_size > self.crop_size: stride = int(math.ceil(self.crop_size * self.stride_rate)) h_step_num = int(math.ceil((h - self.crop_size) / float(stride))) + 1 w_step_num = int(math.ceil((w - self.crop_size) / float(stride))) + 1 img_slices, mask_slices, slices_info = [], [], [] for yy in range(h_step_num): for xx in range(w_step_num): sy, sx = yy * stride, xx * stride ey, ex = sy + self.crop_size, sx + self.crop_size img_sub = img[sy: ey, sx: ex, :] mask_sub = mask[sy: ey, sx: ex] img_sub, mask_sub, sub_h, sub_w = self._pad(img_sub, mask_sub) img_slices.append(Image.fromarray(img_sub.astype(np.uint8)).convert('RGB')) mask_slices.append(Image.fromarray(mask_sub.astype(np.uint8)).convert('P')) slices_info.append([sy, ey, sx, ex, sub_h, sub_w]) return img_slices, mask_slices, slices_info else: img, mask, sub_h, sub_w = self._pad(img, mask) img = Image.fromarray(img.astype(np.uint8)).convert('RGB') mask = Image.fromarray(mask.astype(np.uint8)).convert('P') return [img], [mask], [[0, sub_h, 0, sub_w, sub_h, sub_w]]
方法二
import numpy as np import random import torch from torchvision import transforms as T from torchvision.transforms import functional as F def pad_if_smaller(img, size, fill=0): # 如果圖像最小邊長小於給定size,則用數值fill進行padding min_size = min(img.size) if min_size < size: ow, oh = img.size padh = size - oh if oh < size else 0 padw = size - ow if ow < size else 0 img = F.pad(img, (0, 0, padw, padh), fill=fill) return img class Compose(object): def __init__(self, transforms): self.transforms = transforms def __call__(self, image, target): for t in self.transforms: image, target = t(image, target) return image, target class RandomResize(object): def __init__(self, min_size, max_size=None): self.min_size = min_size if max_size is None: max_size = min_size self.max_size = max_size def __call__(self, image, target): size = random.randint(self.min_size, self.max_size) # 這裡size傳入的是int類型,所以是將圖像的最小邊長縮放到size大小 image = F.resize(image, size) # 這裡的interpolation註意下,在torchvision(0.9.0)以後才有InterpolationMode.NEAREST # 如果是之前的版本需要使用PIL.Image.NEAREST target = F.resize(target, size, interpolation=T.InterpolationMode.NEAREST) return image, target class RandomHorizontalFlip(object): def __init__(self, flip_prob): self.flip_prob = flip_prob def __call__(self, image, target): if random.random() < self.flip_prob: image = F.hflip(image) target = F.hflip(target) return image, target class RandomCrop(object): def __init__(self, size): self.size = size def __call__(self, image, target): image = pad_if_smaller(image, self.size) target = pad_if_smaller(target, self.size, fill=255) crop_params = T.RandomCrop.get_params(image, (self.size, self.size)) image = F.crop(image, *crop_params) target = F.crop(target, *crop_params) return image, target class CenterCrop(object): def __init__(self, size): self.size = size def __call__(self, image, target): image = F.center_crop(image, self.size) target = F.center_crop(target, self.size) return image, target class ToTensor(object): def __call__(self, image, target): image = F.to_tensor(image) target = torch.as_tensor(np.array(target), dtype=torch.int64) return image, target class Normalize(object): def __init__(self, mean, std): self.mean = mean self.std = std def __call__(self, image, target): image = F.normalize(image, mean=self.mean, std=self.std) return image, target
到此這篇關於詳解Python實現圖像分割增強的兩種方法的文章就介紹到這瞭,更多相關Python圖像分割增強內容請搜索WalkonNet以前的文章或繼續瀏覽下面的相關文章希望大傢以後多多支持WalkonNet!
推薦閱讀:
- Python卷積神經網絡圖片分類框架詳解分析
- Pytorch中transforms.Resize()的簡單使用
- Python Pytorch深度學習之數據加載和處理
- 使用pytorch讀取數據集
- pytorch 中transforms的使用詳解