Python開啟尾遞歸優化的實現示例
一般遞歸與尾遞歸
一般遞歸:
def normal_recursion(n): if n == 1: return 1 else: return n + normal_recursion(n-1)
執行:
normal_recursion(5) 5 + normal_recursion(4) 5 + 4 + normal_recursion(3) 5 + 4 + 3 + normal_recursion(2) 5 + 4 + 3 + 2 + normal_recursion(1) 5 + 4 + 3 + 3 5 + 4 + 6 5 + 10 15
可以看到, 一般遞歸, 每一級遞歸都產生瞭新的局部變量, 必須創建新的調用棧, 隨著遞歸深度的增加, 創建的棧越來越多, 造成爆棧?
尾遞歸
尾遞歸基於函數的尾調用, 每一級調用直接返回遞歸函數更新調用棧, 沒有新局部變量的產生, 類似迭代的實現:
def tail_recursion(n, total=0): if n == 0: return total else: return tail_recursion(n-1, total+n)
執行:
tail_recursion(5, 0) tail_recursion(4, 5) tail_recursion(3, 9) tail_recursion(2, 12) tail_recursion(1, 14) tail_recursion(0, 15) 15
可以看到, 尾遞歸每一級遞歸函數的調用變成"線性"的形式. 這時, 我們可以思考, 雖然尾遞歸調用也會創建新的棧, 但是我們可以優化使得尾遞歸的每一級調用共用一個棧!, 如此便可解決爆棧和遞歸深度限制的問題!
C中尾遞歸的優化
gcc使用-O2
參數開啟尾遞歸優化:
int tail_recursion(int n, int total) { if (n == 0) { return total; } else { return tail_recursion(n-1, total+n); } } int main(void) { int total = 0, n = 4; tail_recursion(n, total); return 0; }
反匯編
$ gcc -S tail_recursion.c -o normal_recursion.S $ gcc -S -O2 tail_recursion.c -o tail_recursion.S gcc開啟尾遞歸優化
對比反匯編代碼如下(AT&T語法, 左圖為優化後)
可以看到, 開啟尾遞歸優化前, 使用call調用函數, 創建瞭新的調用棧(LBB0_3); 而開啟尾遞歸優化後, 就沒有新的調用棧生成瞭, 而是直接pop bp指向的_tail_recursion函數的地址(pushq %rbp)然後返回, 仍舊用的是同一個調用棧!
Python開啟尾遞歸優化
cpython本身不支持尾遞歸優化, 但是一個牛人想出的解決辦法:
實現一個 tail_call_optimized 裝飾器
#!/usr/bin/env python2.4 # This program shows off a python decorator( # which implements tail call optimization. It # does this by throwing an exception if it is # it's own grandparent, and catching such # exceptions to recall the stack. import sys class TailRecurseException: def __init__(self, args, kwargs): self.args = args self.kwargs = kwargs def tail_call_optimized(g): """ This function decorates a function with tail call optimization. It does this by throwing an exception if it is it's own grandparent, and catching such exceptions to fake the tail call optimization. This function fails if the decorated function recurses in a non-tail context. """ def func(*args, **kwargs): f = sys._getframe() if f.f_back and f.f_back.f_back \ and f.f_back.f_back.f_code == f.f_code: # 拋出異常 raise TailRecurseException(args, kwargs) else: while 1: try: return g(*args, **kwargs) except TailRecurseException, e: args = e.args kwargs = e.kwargs func.__doc__ = g.__doc__ return func @tail_call_optimized def factorial(n, acc=1): "calculate a factorial" if n == 0: return acc return factorial(n-1, n*acc) print factorial(10000)
這裡解釋一下sys._getframe()函數:
sys._getframe([depth]):
Return a frame object from the call stack.
If optional integer depth is given, return the frame object that many calls below the top of the stack.
If that is deeper than the call stack, ValueEfror is raised. The default for depth is zero,
returning the frame at the top of the call stack.
即返回depth深度調用的棧幀對象.
import sys def get_cur_info(): print sys._getframe().f_code.co_filename # 當前文件名 print sys._getframe().f_code.co_name # 當前函數名 print sys._getframe().f_lineno # 當前行號 print sys._getframe().f_back # 調用者的幀
更多關於sys._getframe的使用請看https://www.jb51.net/article/181387.htm
說一下tail_call_optimized實現尾遞歸優化的原理:
當遞歸函數被該裝飾器修飾後, 遞歸調用在裝飾器while循環內部進行, 每當產生新的遞歸調用棧幀時: f.f_back.f_back.f_code == f.f_code:, 就捕獲當前尾調用函數的參數, 並拋出異常, 從而銷毀遞歸棧並使用捕獲的參數手動調用遞歸函數. 所以遞歸的過程中始終隻存在一個棧幀對象, 達到優化的目的.
為瞭更清晰的展示開啟尾遞歸優化前、後調用棧的變化和tail_call_optimized裝飾器拋異常退出遞歸調用棧的作用, 我這裡利用pudb調試工具做瞭動圖:
開啟尾遞歸優化前的調用棧
開啟尾遞歸優化後(tail_call_optimized裝飾器)的調用棧
通過pudb右邊欄的stack, 可以很清晰的看到調用棧的變化.
因為實現瞭尾遞歸優化, 所以factorial(10000)都不害怕遞歸深度限制報錯啦!
以上就是Python開啟尾遞歸優化實現示例的詳細內容,更多關於Python尾遞歸優化!的資料請關註WalkonNet其它相關文章!