C++ pimpl機制詳細講解
源碼倉庫
什麼是PImpl機制
Pointer to implementation(PImpl ),通過將類的實現細節放在一個單獨的類中,從其對象表示中刪除它們,通過一個不透明的指針訪問它們(cppreference 是這麼說的)
通過一個私有的成員指針,將指針所指向的類的內部實現數據進行隱藏
class Demo { public: ... private: DemoImp* imp_; }
為什麼用PImpl 機制
個人拙見
- C++ 不像Java 後端型代碼,能有行業定式的列目錄名形成規范(controller、Dao等)
- 隱藏實現,降低耦合性和分離接口(隱藏類的具體實現)
- 通過編譯期的封裝(隱藏實現類的細節)
業界實現
優秀開源代碼有實現
PImpl實現
方法一
cook_cuisine.h
#pragma once #include <unordered_map> #include <vector> #include <memory> // Pointer to impl ementation class CookImpl; // 後廚 class Cook { public: Cook(int, const std::vector<std::string>&); ~Cook(); std::vector<std::string> getMenu(); /* 獲取菜單 */ uint32_t getChefNum(); /* 獲取廚師數量 */ private: CookImpl* impl_; }; typedef std::shared_ptr<Cook> CookPtr; // 美妙的typedef 懶人工具
cook_cuisine.cc
#include "cook_cuisine.h" class CookImpl { public: CookImpl(uint32_t checf_num, const std::vector<std::string>& menu):checf_num_(checf_num), menu_(menu) {} std::vector<std::string> getMenu(); uint32_t getChefNum(); private: uint32_t checf_num_; std::vector<std::string> menu_; }; std::vector<std::string> CookImpl::getMenu() { return menu_; } uint32_t CookImpl::getChefNum() { return checf_num_; } Cook::Cook(int chef_num, const std::vector<std::string>& menu) { impl_ = new CookImpl(chef_num, menu); } Cook::~Cook() { delete impl_; } std::vector<std::string> Cook::getMenu() { return impl_->getMenu(); } uint32_t Cook::getChefNum() { return impl_->getChefNum(); }
方法二
cook_cuisine.h
#pragma once #include <unordered_map> #include <vector> #include <memory> #include "cook_cuisine_imp.h" // 後廚 class Cook { public: Cook(int, const std::vector<std::string>&); ~Cook(); std::vector<std::string> getMenu(); /* 獲取菜單 */ uint32_t getChefNum(); /* 獲取廚師數量 */ private: CookImplPtr impl_; }; typedef std::shared_ptr<Cook> CookPtr;
cook_cuisine.cc
#include "cook_cuisine.h" Cook::Cook(int chef_num, const std::vector<std::string>& menu) { impl_.reset(new CookImpl(chef_num, menu)); } Cook::~Cook() { } std::vector<std::string> Cook::getMenu() { return impl_->getMenu(); } uint32_t Cook::getChefNum() { return impl_->getChefNum(); }
cook_cuisine_imp.h
#pragma once #include <vector> #include <unordered_map> #include <memory> class CookImpl { public: CookImpl(uint32_t checf_num, const std::vector<std::string>& menu):checf_num_(checf_num), menu_(menu) {} std::vector<std::string> getMenu(); uint32_t getChefNum(); private: uint32_t checf_num_; std::vector<std::string> menu_; }; typedef std::shared_ptr<CookImpl> CookImplPtr;
cook_cusine_imp.cc
#include "cook_cuisine_imp.h" std::vector<std::string> CookImpl::getMenu() { return menu_; } uint32_t CookImpl::getChefNum() { return checf_num_; }
main.cc
#include "cook_cuisine.h" #include <iostream> using namespace std; // Testing, 平時開發可千萬別用這句 int main() { int checf_num = 10; const std::vector<std::string> menus = { "Chicken", "Beef", "Noodle", "Milk" }; CookPtr cook(new Cook(checf_num, menus)); auto cook_menu = cook->getMenu(); auto cook_checf_num = cook->getChefNum(); cout << "======================Chinese Cook======================\n"; cout << "============Checf: " << cook_checf_num << " people\n"; cout << "==========Menu\n"; for (size_t i = 0; i < cook_menu.size(); i++) { cout << "============" << i + 1 << " : " << cook_menu[i] << "\n"; } return 0; }
CMakeLists.txt
mkdir build
cd build
cmake ..
PImpl 缺點
空間開銷:每個類都需要額外的指針內存指向實現類
時間開銷:每個類間接訪問實現的時候多一個間接指針操作的開銷
閱讀開銷:使用、閱讀和調試上帶來一些不便(不是啥問題)
總結
每種設計方法都有它的優點和缺點
PImpl 用一些內存空間和額外類的實現換取耦合性的下降,是可以接受的
但重點在:在性能/內存要求不敏感處,PImpl 技術才更優不錯的發揮舞臺
極端例子:
你不可能在斐波那契的實現中還加個PImpl 機制,多此一舉
到此這篇關於C++ pimpl機制詳細講解的文章就介紹到這瞭,更多相關C++ pimpl機制內容請搜索WalkonNet以前的文章或繼續瀏覽下面的相關文章希望大傢以後多多支持WalkonNet!