Pytorch中如何調用forward()函數
Pytorch調用forward()函數
Module類是nn模塊裡提供的一個模型構造類,是所有神經網絡模塊的基類,我們可以繼承它來定義我們想要的模型。
下面繼承Module類構造本節開頭提到的多層感知機。
這裡定義的MLP類重載瞭Module類的__init__函數和forward函數。
它們分別用於創建模型參數和定義前向計算。
前向計算也即正向傳播。
import torch from torch import nn class MLP(nn.Module): # 聲明帶有模型參數的層,這裡聲明瞭兩個全連接層 def __init__(self, **kwargs): # 調用MLP父類Module的構造函數來進行必要的初始化。這樣在構造實例時還可以指定其他函數 # 參數,如“模型參數的訪問、初始化和共享”一節將介紹的模型參數params super(MLP, self).__init__(**kwargs) self.hidden = nn.Linear(784, 256) # 隱藏層 self.act = nn.ReLU() self.output = nn.Linear(256, 10) # 輸出層 # 定義模型的前向計算,即如何根據輸入x計算返回所需要的模型輸出 def forward(self, x): a = self.act(self.hidden(x)) return self.output(a) X = torch.rand(2, 784) net = MLP() print(net) net(X)
輸出:
MLP( (hidden): Linear(in_features=784, out_features=256, bias=True) (act): ReLU() (output): Linear(in_features=256, out_features=10, bias=True) ) tensor([[-0.1798, -0.2253, 0.0206, -0.1067, -0.0889, 0.1818, -0.1474, 0.1845, -0.1870, 0.1970], [-0.1843, -0.1562, -0.0090, 0.0351, -0.1538, 0.0992, -0.0883, 0.0911, -0.2293, 0.2360]], grad_fn=<ThAddmmBackward>)
為什麼會調用forward()呢,是因為Module中定義瞭__call__()函數,該函數調用瞭forward()函數,當執行net(x)的時候,會自動調用__call__()函數
Pytorch函數調用的問題和源碼解讀
最近用到 softmax 函數,但是發現 softmax 的寫法五花八門,記錄如下
# torch._C._VariableFunctions torch.softmax(x, dim=-1)
# class softmax = torch.nn.Softmax(dim=-1) x=softmax(x)
# function x = torch.nn.functional.softmax(x, dim=-1)
簡單測試瞭一下,用 torch.nn.Softmax 類是最慢的,另外兩個差不多
torch.nn.Softmax 源碼如下,可以看到這是個類,而他這裡的 return F.softmax(input, self.dim, _stacklevel=5) 調用的是 torch.nn.functional.softmax
class Softmax(Module): r"""Applies the Softmax function to an n-dimensional input Tensor rescaling them so that the elements of the n-dimensional output Tensor lie in the range [0,1] and sum to 1. Softmax is defined as: .. math:: \text{Softmax}(x_{i}) = \frac{\exp(x_i)}{\sum_j \exp(x_j)} When the input Tensor is a sparse tensor then the unspecifed values are treated as ``-inf``. Shape: - Input: :math:`(*)` where `*` means, any number of additional dimensions - Output: :math:`(*)`, same shape as the input Returns: a Tensor of the same dimension and shape as the input with values in the range [0, 1] Args: dim (int): A dimension along which Softmax will be computed (so every slice along dim will sum to 1). .. note:: This module doesn't work directly with NLLLoss, which expects the Log to be computed between the Softmax and itself. Use `LogSoftmax` instead (it's faster and has better numerical properties). Examples:: >>> m = nn.Softmax(dim=1) >>> input = torch.randn(2, 3) >>> output = m(input) """ __constants__ = ['dim'] dim: Optional[int] def __init__(self, dim: Optional[int] = None) -> None: super(Softmax, self).__init__() self.dim = dim def __setstate__(self, state): self.__dict__.update(state) if not hasattr(self, 'dim'): self.dim = None def forward(self, input: Tensor) -> Tensor: return F.softmax(input, self.dim, _stacklevel=5) def extra_repr(self) -> str: return 'dim={dim}'.format(dim=self.dim)
torch.nn.functional.softmax 函數源碼如下,可以看到 ret = input.softmax(dim) 實際上調用瞭 torch._C._VariableFunctions 中的 softmax 函數
def softmax(input: Tensor, dim: Optional[int] = None, _stacklevel: int = 3, dtype: Optional[DType] = None) -> Tensor: r"""Applies a softmax function. Softmax is defined as: :math:`\text{Softmax}(x_{i}) = \frac{\exp(x_i)}{\sum_j \exp(x_j)}` It is applied to all slices along dim, and will re-scale them so that the elements lie in the range `[0, 1]` and sum to 1. See :class:`~torch.nn.Softmax` for more details. Args: input (Tensor): input dim (int): A dimension along which softmax will be computed. dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. If specified, the input tensor is casted to :attr:`dtype` before the operation is performed. This is useful for preventing data type overflows. Default: None. .. note:: This function doesn't work directly with NLLLoss, which expects the Log to be computed between the Softmax and itself. Use log_softmax instead (it's faster and has better numerical properties). """ if has_torch_function_unary(input): return handle_torch_function(softmax, (input,), input, dim=dim, _stacklevel=_stacklevel, dtype=dtype) if dim is None: dim = _get_softmax_dim("softmax", input.dim(), _stacklevel) if dtype is None: ret = input.softmax(dim) else: ret = input.softmax(dim, dtype=dtype) return ret
那麼不如直接調用 built-in C 的函數?
但是有個博客 A selective excursion into the internals of PyTorch 裡說
Note: That bilinear is exported as torch.bilinear is somewhat accidental. Do use the documented interfaces, here torch.nn.functional.bilinear whenever you can!
意思是說 built-in C 能被 torch.xxx 直接調用是意外的,強烈建議使用 torch.nn.functional.xxx 這樣的接口
看到最新的 transformer 官方代碼裡也用的是 torch.nn.functional.softmax,還是和他們一致更好(雖然他們之前用的是類。。。)
總結
以上為個人經驗,希望能給大傢一個參考,也希望大傢多多支持WalkonNet。
推薦閱讀:
- Pytorch中Softmax和LogSoftmax的使用詳解
- pytorch中的hook機制register_forward_hook
- PyTorch零基礎入門之構建模型基礎
- Python LeNet網絡詳解及pytorch實現
- Pytorch深度學習之實現病蟲害圖像分類