Android 應用程序的啟動流程示例詳解
應用進程的啟動流程
本文基於Android 11,主要分析應用程序的啟動流程,會直接定位到ActivityStackSupervisor.startSpecificActivity函數開始,因為該函數前面的內容主要在Activity的啟動流程中,可以通過這部分的文章來閱讀。
看源碼流程,需要戒驕戒躁,心態好。配合源碼使用,建議先收藏,夜深人靜,心血來潮再看。
通過分析應用進程的啟動流程,可以得到:
- 在Framework層,現在不止有AMS負責請求Zygote進程創建新進程,還有ATMS、ActivityStarter、ActivityTaskManger、ActivityTaskS在協助分擔一些參數和邏輯的檢查。
- 每個進程都是通過fork Zygote進程而來,且獲得Java虛擬機。也就是說每一個應用進程都有自己的虛擬機。
- 應用進程是通過Soket去請求Zygote進程fork自己的。
- 每個進程都有自己的Binder線程池用於IPC。
- 每個應用進程的主線程在ActivityThread,其main函數會創建消息循環機制。
1、ActivityStackSupervisor.startSpecificActivity
ATMS有一個ProcessMap<WindowProcessController>類型的mProcessNames ,用於存儲封裝瞭已啟動進程信息ProcessRecord和窗口信息Windows的WindowProcessController實例。WindowProcessController用於協調ActivityManger管理ProcessReocrd和WindwManger管理WIndow和Activity的關系。
void startSpecificActivity(ActivityRecord r, boolean andResume, boolean checkConfig) { // Is this activity's application already running? final WindowProcessController wpc = mService.getProcessController(r.processName, r.info.applicationInfo.uid); boolean knownToBeDead = false; if (wpc != null && wpc.hasThread()) { realStartActivityLocked(r, wpc, andResume, checkConfig); return; ... knownToBeDead = true; } r.notifyUnknownVisibilityLaunchedForKeyguardTransition(); final boolean isTop = andResume && r.isTopRunningActivity(); mService.startProcessAsync(r, knownToBeDead, isTop, isTop ? "top-activity" : "activity"); }
這裡的mService是ActivityTaskManagerService的實例,通過getProcessController函數獲得當前wpc對象,判斷當前啟動應用進程是否啟動wpc != null && wpc.hasThread(),如果條件成立,則開始真正啟動一個未啟動過的Activity,通過realStartActivityLocked;條件不成立,則調用mService的startProcessAsync啟動當前Activity的所在的進程。即startSpecificActivity函數是啟動進程和啟動Activity的一個分界點。
2、ATMS.startProcessAsync
PooledLambda.obtainMessage函數是Lambda的調用方式,表示調用ActivityManagerInternal的startProcess函數,後續則是其參數。並返回一個Message對象,發給Handler類型的mH。
void startProcessAsync(ActivityRecord activity, boolean knownToBeDead, boolean isTop, String hostingType) { final Message m = PooledLambda.obtainMessage(ActivityManagerInternal::startProcess, mAmInternal, activity.processName, activity.info.applicationInfo, knownToBeDead, isTop, hostingType, activity.intent.getComponent()); mH.sendMessage(m); }
抽象類ActivityManagerInternal的繼承類定義在ActivityManagerService的內部類LocalService。
public final class LocalService extends ActivityManagerInternal
3、LocalService.startProcess
@Override public void startProcess(String processName, ApplicationInfo info, boolean knownToBeDead, boolean isTop, String hostingType, ComponentName hostingName) { startProcessLocked(processName, info, knownToBeDead, 0 /* intentFlags */, new HostingRecord(hostingType, hostingName, isTop), ZYGOTE_POLICY_FLAG_LATENCY_SENSITIVE, false /* allowWhileBooting */, false /* isolated */, true /* keepIfLarge */); }
4、startProcessLocked函數
final ProcessRecord startProcessLocked(String processName, ApplicationInfo info, boolean knownToBeDead, int intentFlags, HostingRecord hostingRecord, int zygotePolicyFlags, boolean allowWhileBooting, boolean isolated, boolean keepIfLarge) { return mProcessList.startProcessLocked(processName, info, knownToBeDead, intentFlags, hostingRecord, zygotePolicyFlags, allowWhileBooting, isolated, 0 /* isolatedUid */, keepIfLarge, null /* ABI override */, null /* entryPoint */, null /* entryPointArgs */, null /* crashHandler */); }
5、ProcessList.startProcessLocked
ProcessList類的startProcessLocked函數,有幾個重載函數,第一個調用。
在 !isolated,判斷瞭啟動IntentFlag是否後臺運行,是的話,直接拒絕。否則清理AMS中發生過Crash的進程(當前應用)。
分析一:創立當前應用進程的描述ProcessRecord。
判斷當前系統是否啟動完畢,未啟動完畢,將進程信息緩存到AMS的mProcessesOnHold中。
分析二:調用瞭另外一個重載函數。
final ProcessRecord startProcessLocked(String processName, ApplicationInfo info, boolean knownToBeDead, int intentFlags, HostingRecord hostingRecord, int zygotePolicyFlags, boolean allowWhileBooting, boolean isolated, int isolatedUid, boolean keepIfLarge, String abiOverride, String entryPoint, String[] entryPointArgs, Runnable crashHandler) { long startTime = SystemClock.uptimeMillis(); ProcessRecord app; //isolated傳遞進來是false, if (!isolated) { //從mProcessNames緩存獲取,由於是首次創建,null app = getProcessRecordLocked(processName, info.uid, keepIfLarge); checkSlow(startTime, "startProcess: after getProcessRecord"); //判斷要啟動進程是否後臺運行,直接return null if ((intentFlags & Intent.FLAG_FROM_BACKGROUND) != 0) { if (mService.mAppErrors.isBadProcessLocked(info)) { return null; } } else { //重置進程的crash狀態,使其處於正常狀態 mService.mAppErrors.resetProcessCrashTimeLocked(info); if (mService.mAppErrors.isBadProcessLocked(info)) { mService.mAppErrors.clearBadProcessLocked(info); if (app != null) { app.bad = false; } } } } else { app = null; } ProcessRecord precedence = null; if (app != null && app.pid > 0) { if ((!knownToBeDead && !app.killed) || app.thread == null) { app.addPackage(info.packageName, info.longVersionCode, mService.mProcessStats); return app; } ProcessList.killProcessGroup(app.uid, app.pid); precedence = app; app = null; } if (app == null) { // 分析一、創建新的應用進程描述ProcessRocrd //內部會將自己添加到mProcessNames中 app = newProcessRecordLocked(info, processName, isolated, isolatedUid, hostingRecord); if (app == null) { return null; } //此時三者都是null app.crashHandler = crashHandler; app.isolatedEntryPoint = entryPoint; app.isolatedEntryPointArgs = entryPointArgs; if (precedence != null) { app.mPrecedence = precedence; precedence.mSuccessor = app; } } else { app.addPackage(info.packageName, info.longVersionCode, mService.mProcessStats); } // If the system is not ready yet, then hold off on starting this // process until it is. if (!mService.mProcessesReady && !mService.isAllowedWhileBooting(info) && !allowWhileBooting) { if (!mService.mProcessesOnHold.contains(app)) { mService.mProcessesOnHold.add(app); } if (DEBUG_PROCESSES) Slog.v(TAG_PROCESSES, "System not ready, putting on hold: " + app); checkSlow(startTime, "startProcess: returning with proc on hold"); return app; } 分析二: final boolean success = startProcessLocked(app, hostingRecord, zygotePolicyFlags, abiOverride); checkSlow(startTime, "startProcess: done starting proc!"); return success ? app : null; }
6、ProcessList.startProcessLocked重載
再次調用另外一個重載函數。
final boolean startProcessLocked(ProcessRecord app, HostingRecord hostingRecord, int zygotePolicyFlags, String abiOverride) { return startProcessLocked(app, hostingRecord, zygotePolicyFlags, false /* disableHiddenApiChecks */, false /* disableTestApiChecks */, false /* mountExtStorageFull */, abiOverride); }
重載函數,這個重載函數處理邏輯很長,主要給前面創建的ProcessRecord類型的app設置各種屬性。例如外部存儲掛載模式,應用進程運行模式,abi架構等等,其中包括最重要一點就是分析一,確定要啟動進程的的類名:android.app.ActivityThread。分析二,繼續調用重載函數。
boolean startProcessLocked(ProcessRecord app, HostingRecord hostingRecord, int zygotePolicyFlags, boolean disableHiddenApiChecks, boolean disableTestApiChecks, boolean mountExtStorageFull, String abiOverride) { ... app.gids = gids; app.setRequiredAbi(requiredAbi); app.instructionSet = instructionSet; final String seInfo = app.info.seInfo + (TextUtils.isEmpty(app.info.seInfoUser) ? "" : app.info.seInfoUser); //分析一:確定要啟動應用程序的類名 final String entryPoint = "android.app.ActivityThread"; //分析二:調用另外一個重載函數 return startProcessLocked(hostingRecord, entryPoint, app, uid, gids, runtimeFlags, zygotePolicyFlags, mountExternal, seInfo, requiredAbi, instructionSet, invokeWith, startTime); } catch (RuntimeException e) { ... } }
重載函數:也是設置一些屬性,然後調用startProcess函數。
boolean startProcessLocked(HostingRecord hostingRecord, String entryPoint, ProcessRecord app, int uid, int[] gids, int runtimeFlags, int zygotePolicyFlags, int mountExternal, String seInfo, String requiredAbi, String instructionSet, String invokeWith, long startTime) { ... final Process.ProcessStartResult startResult = startProcess(hostingRecord, entryPoint, app, uid, gids, runtimeFlags, zygotePolicyFlags, mountExternal, seInfo, requiredAbi, instructionSet, invokeWith, startTime); handleProcessStartedLocked(app, startResult.pid, startResult.usingWrapper, startSeq, false); ... } }
7、ProcessList.startProcess
ProcessList類的startProcess函數會根據hostingRecord屬性mHostingZygote判斷走不同的創建分支,前面創建使用默認值,所以走瞭else分支。通過 Process.start函數創建新的應用進程。
Process.start的一路調用:
Process.start=>ZygoteProcess.start=>ZygoteState.start=>ZygoteState.startViaZygote
8、ZygoteState.startViaZygote
startViaZygote函數,主要是將傳遞進來的參數拼接成成字符串和收集起來。其中processClass是
private Process.ProcessStartResult startViaZygote(...) throws ZygoteStartFailedEx { //根據傳遞進來的參數,拼接成字符串並收集到ArrayList<String>類型argsForZygote //將作為新應用程序的主函數的參數 return zygoteSendArgsAndGetResult(openZygoteSocketIfNeeded(abi), zygotePolicyFlags, argsForZygote); }
9、ZygoteState.openZygoteSocketIfNeeded
zygoteSendArgsAndGetResult的第一個參數,調用瞭openZygoteSocketIfNeeded函數。嘗試建立與Socket的連接(如果之前未建立的話)。我們知道Zygote進程在創建的過程,會調用runSelectLoop函數,創建Server端的Socket,一直等待來自AMS的Client端的Socket創建進程請求。
private ZygoteState openZygoteSocketIfNeeded(String abi) throws ZygoteStartFailedEx { try { //建立和Zygote的Socket連接 attemptConnectionToPrimaryZygote(); //匹配abi的架構。在Zygote的創建對應四種模式:32,32_64和64,64_32 //32,64 if (primaryZygoteState.matches(abi)) { return primaryZygoteState; } //主要架構模式不配,匹配第二種 32_64,64_32 if (mZygoteSecondarySocketAddress != null) { // The primary zygote didn't match. Try the secondary. attemptConnectionToSecondaryZygote(); if (secondaryZygoteState.matches(abi)) { return secondaryZygoteState; } } } catch (IOException ioe) { throw new ZygoteStartFailedEx("Error connecting to zygote", ioe); } throw new ZygoteStartFailedEx("Unsupported zygote ABI: " + abi); }
attemptConnectionToPrimaryZygote函數主要通過底層的LocalSocket創建與Zygote進程的Socket連接,並獲得輸入流zygoteInputStream和輸出流zygoteOutputWriter。
private void attemptConnectionToPrimaryZygote() throws IOException { if (primaryZygoteState == null || primaryZygoteState.isClosed()) { primaryZygoteState = ZygoteState.connect(mZygoteSocketAddress, mUsapPoolSocketAddress); maybeSetApiBlacklistExemptions(primaryZygoteState, false); maybeSetHiddenApiAccessLogSampleRate(primaryZygoteState); } }
和Zygote進程的Server端Socket建立連接後,就是開始往Socket寫數據瞭。
10、attemptZygoteSendArgsAndGetResult
回到第8步調用瞭zygoteSendArgsAndGetResult函數,又調用瞭attemptZygoteSendArgsAndGetResult函數。
zygoteSendArgsAndGetResult=>attemptZygoteSendArgsAndGetResult
11、attemptZygoteSendArgsAndGetResult
到這裡,通過Socket的方式向Zygote進程寫進前面拼接好的參數,Zygote在Server端的Socket接收到數據之後,會執行創建動作。在返回的result.pid>=0表示創建成功,並運行在新的進程。
private Process.ProcessStartResult attemptZygoteSendArgsAndGetResult( ZygoteState zygoteState, String msgStr) throws ZygoteStartFailedEx { try { final BufferedWriter zygoteWriter = zygoteState.mZygoteOutputWriter; final DataInputStream zygoteInputStream = zygoteState.mZygoteInputStream; zygoteWriter.write(msgStr); zygoteWriter.flush(); Process.ProcessStartResult result = new Process.ProcessStartResult(); result.pid = zygoteInputStream.readInt(); result.usingWrapper = zygoteInputStream.readBoolean(); if (result.pid < 0) { throw new ZygoteStartFailedEx("fork() failed"); } return result; } catch (IOException ex) { zygoteState.close(); Log.e(LOG_TAG, "IO Exception while communicating with Zygote - " + ex.toString()); throw new ZygoteStartFailedEx(ex); } }
12、Zygote.main
在Zygote的啟動流程過程,調用瞭ZygoteInit的main函數,因為Zygote是通過fork自身來創建其他進程,所以需要根據傳遞進來的參數,進行判斷是啟動什麼類型的進程,例如自身isPrimaryZygote=true,或者SystemServer進程。然後通過ZygoteServer.runSelectLoop函數,等待其他進程請求創建新的進程。
public static void main(String argv[]) { ZygoteServer zygoteServer = null; Runnable caller; try { ... boolean startSystemServer = false; String zygoteSocketName = "zygote"; String abiList = null; boolean enableLazyPreload = false; for (int i = 1; i < argv.length; i++) { if ("start-system-server".equals(argv[i])) { startSystemServer = true; //判斷是否SystemServer進程 } else if ("--enable-lazy-preload".equals(argv[i])) { enableLazyPreload = true; } else if (argv[i].startsWith(ABI_LIST_ARG)) { abiList = argv[i].substring(ABI_LIST_ARG.length()); } else if (argv[i].startsWith(SOCKET_NAME_ARG)) { //SCOKET_NAME_ARG="--socket-name=",根據參數得到SocketName zygoteSocketName = argv[i].substring(SOCKET_NAME_ARG.length()); } else { throw new RuntimeException("Unknown command line argument: " + argv[i]); } } //PRIMARY_SOCKET_NAME=zygote final boolean isPrimaryZygote = zygoteSocketName.equals(Zygote.PRIMARY_SOCKET_NAME); gcAndFinalize(); Zygote.initNativeState(isPrimaryZygote); ZygoteHooks.stopZygoteNoThreadCreation(); zygoteServer = new ZygoteServer(isPrimaryZygote); if (startSystemServer) { //啟動SystemServer進程 Runnable r = forkSystemServer(abiList, zygoteSocketName, zygoteServer); if (r != null) { r.run(); return; } } //循環等待AMS來請求創建新的進程 caller = zygoteServer.runSelectLoop(abiList); } catch (Throwable ex) { Log.e(TAG, "System zygote died with exception", ex); throw ex; } finally { if (zygoteServer != null) { zygoteServer.closeServerSocket(); } } //調用新的進程主函數 if (caller != null) { caller.run(); } }
13、ZygoteServer.runSelectLoo
這裡隻關註ZygoteServer.runSelectLoop函數,接受Socket客戶端數據。
/** * Runs the zygote process's select loop. Accepts new connections as * they happen, and reads commands from connections one spawn-request's * worth at a time. */ Runnable runSelectLoop(String abiList) { while (true) { ... ZygoteConnection connection = peers.get(pollIndex); final Runnable command = connection.processOneCommand(this); ... if (mIsForkChild) { return command; } .... } }
14、ZygoteConnection.processOneCommand
runSelctLoop主要是從循環中檢測是否有連接建立,建立之後執行ZygoteConnection的processOneCommand函數,並返回一個Runable類型的command對象。
Runnable processOneCommand(ZygoteServer zygoteServer) { ... args = Zygote.readArgumentList(mSocketReader); //根據參數內容,作其他類型的處理 ... //創建進程,調用底層nativeForkAndSpecialize方法,通過fork當前進程來創建一個子線程。 pid = Zygote.forkAndSpecialize(parsedArgs.mUid, parsedArgs.mGid, parsedArgs.mGids, parsedArgs.mRuntimeFlags, rlimits, parsedArgs.mMountExternal, parsedArgs.mSeInfo, parsedArgs.mNiceName, fdsToClose, fdsToIgnore, parsedArgs.mStartChildZygote, parsedArgs.mInstructionSet, parsedArgs.mAppDataDir, parsedArgs.mIsTopApp, parsedArgs.mPkgDataInfoList, parsedArgs.mWhitelistedDataInfoList, parsedArgs.mBindMountAppDataDirs, parsedArgs.mBindMountAppStorageDirs); ... if (pid == 0) { //設置mIsForkChild=true zygoteServer.setForkChild(); //關閉Socket連接 zygoteServer.closeServerSocket(); IoUtils.closeQuietly(serverPipeFd); serverPipeFd = null; //執行子進程內容 return handleChildProc(parsedArgs, childPipeFd, parsedArgs.mStartChildZygote); } ... }
15、handleChildProc
handleChildProc函數。
private Runnable handleChildProc(ZygoteArguments parsedArgs, FileDescriptor pipeFd, boolean isZygote) { ... if (!isZygote) { return ZygoteInit.zygoteInit(parsedArgs.mTargetSdkVersion, parsedArgs.mDisabledCompatChanges, parsedArgs.mRemainingArgs, null /* classLoader */); } else { return ZygoteInit.childZygoteInit(parsedArgs.mTargetSdkVersion, parsedArgs.mRemainingArgs, null /* classLoader */); } }
16、 ZygoteInit.zygoteInit
public static final Runnable zygoteInit(int targetSdkVersion, long[] disabledCompatChanges, String[] argv, ClassLoader classLoader) { RuntimeInit.commonInit(); ZygoteInit.nativeZygoteInit();//為新進程創建Binder線程池 return RuntimeInit.applicationInit(targetSdkVersion, disabledCompatChanges, argv, classLoader); }
以前還以為每個進程共用一個Binder線程池,現在知道每個進程都有自己的Binder線程池進行IPC。
17、RuntimeInit.applicationInit
protected static Runnable applicationInit(int targetSdkVersion, long[] disabledCompatChanges, String[] argv, ClassLoader classLoader) { final Arguments args = new Arguments(argv); return findStaticMain(args.startClass, args.startArgs, classLoader); }
這裡的args.startClass就是Socket客戶端傳遞下來的android.app.ActivityThread。
18、RuntimeInit.findStaticMain
RuntimeInit.findStaticMain函數主要通過反射創建ActivityThread類的實例,並反射主函數main,然後封裝到MethodAndArgsCaller實例中返回。
protected static Runnable findStaticMain(String className, String[] argv, ClassLoader classLoader) { ... Class<?> cl = Class.forName(className, true, classLoader); Method m = cl.getMethod("main", new Class[] { String[].class }); ... return new MethodAndArgsCaller(m, argv); }
MethodAndArgsCaller類繼承自Runable,並在其run函數,調用主函數方法。
static class MethodAndArgsCaller implements Runnable { /** method to call */ private final Method mMethod; /** argument array */ private final String[] mArgs; public MethodAndArgsCaller(Method method, String[] args) { mMethod = method; mArgs = args; } public void run() { ... mMethod.invoke(null, new Object[] { mArgs }); ... } }
隨著findStaticMain函數方法棧一路返回到runSelectLoop函數,因為mIsForkChild是true,所以MethodAndArgsCaller對象返回到ZygoteInit的main函數,並賦值給caller變量。main函數最後調用caller的run函數。即執行瞭ActivityThread的主函數main。
本來自己還有個疑惑,fork子進程之後,並caller的run函數,已經退出瞭Zygote進程的runSelectLoop循環等待。怎麼繼續去接收AMS新的請求。原來如此,fork子進程後,後續的代碼都運行在瞭子進程,這裡return其實是子進程瞭。
一個進程調用fork()函數後,系統先給新的進程分配資源,例如存儲數據和代碼的空間。然後把原來的進程的所有值都復制到新的新進程中,隻有少數值與原來的進程的值不同。相當於克隆瞭一個自己。
19、進程ActivityThread.main。
public static void main(String[] args) { Looper.prepareMainLooper(); ActivityThread thread = new ActivityThread(); thread.attach(false, startSeq); if (sMainThreadHandler == null) { sMainThreadHandler = thread.getHandler(); } Looper.loop(); }
ActivityThread的主函數,創建瞭ActivityThread進程,並啟動瞭消息循環隊列,代表著當前進程的主線程已啟動。
知識點
- fork函數。
- 通過Socket創建新的進程。
- Binder機制和應用程序創建的時機。
- ActivityThread的進程的主線程。
疑問點
- 通過Zygote進程fork而來的子進程都會獲得Zygote創建的Java虛擬機,也就是每個應用進程都有自己的Java虛擬機。
- 每個應用進程都有屬於自己的Binder線程池和消息循環機制。
- 之所以fork Zygote進程而不是init進程,是避免重復初始化環境資源的加載和虛擬機的創建。
- 進程的創建之所選擇Socket機制進行,因為Binder機制會導致死鎖,怕父進程binder線程有鎖,然後子進程的主線程一直在等其子線程(從父進程拷貝過來的子進程)的資源,但是其實父進程的子進程並沒有被拷貝過來,造成死鎖,所以fork不允許存在多線程。
以上就是Android 應用程序的啟動流程示例詳解的詳細內容,更多關於Android 程序啟動流程的資料請關註WalkonNet其它相關文章!
推薦閱讀:
- Android Handler源碼深入探究
- 詳解App保活實現原理
- Android中關於Binder常見面試問題小結
- Android Service啟動綁定流程詳解
- Android那兩個你碰不到但是很重要的類之ActivityThread