用python實現監控視頻人數統計
一、圖示
客戶端請求輸入一段視頻或者一個視頻流,輸出人數或其他目標數量,上報給上層服務器端,即提供一個http API調用算法統計出人數,最終http上報總人數
二、準備
相關技術 python pytorch opencv http協議 post請求
Flask
Flask是一個Python實現web開發的微框架,對於像我對web框架不熟悉的人來說還是比較容易上手的。
Flask安裝
sudo pip install Flask
三、一個簡單服務器應用
為瞭稍微瞭解一下flask是如何使用的,先做一個簡單的服務器例子。
第一個文件hello.py。
from flask import Flask app = Flask(__name__) @app.route("/") def hello(): return 'hello world!' @app.route("/python") def hello_python(): return 'hello python!' if __name__ == '__main__': app.run(host='0.0.0.0')
app.run(host=‘0.0.0.0′)表示現在設定的ip為0.0.0.0,並且設定為0.0.0.0是非常方便的,如果你是在一臺遠程電腦上設置服務器,並且那臺遠程電腦的ip是172.1.1.1,那麼在本地的電腦上可以設定ip為172.1.1.1來向服務器發起請求。
@app.route(‘/’)表示發送request的地址是http://0.0.0.0:5000/,@app.route(“/python”)表示發送requests的地址為http://0.0.0.0:5000/python。
第二個文件是request.py
import requests url = 'http://0.0.0.0:5000/' r = requests.get(url) print(r.status_code) print(r.text) url = 'http://0.0.0.0:5000/python' r = requests.get(url) print(r.status_code) print(r.text)
四、向服務器發送圖片
服務器代碼
#coding:utf-8 from flask import request, Flask import os app = Flask(__name__) @app.route("/", methods=['POST']) def get_frame(): upload_file = request.files['file'] old_file_name = upload_file.filename file_path = os.path.join('/local/share/DeepLearning', 'new' + old_file_name) if upload_file: upload_file.save(file_path) print "success" return 'success' else: return 'failed' if __name__ == "__main__": app.run("0.0.0.0", port=5000)
客戶端代碼
import requests url = "http://0.0.0.0:5000" filepath='./t2.jpg' split_path = filepath.split('/') filename = split_path[-1] print(filename) file = open(filepath, 'rb') files = {'file':(filename, file, 'image/jpg')} r = requests.post(url,files = files) result = r.text print result
這種情況長傳圖片是最快的,比用opencv先打開後傳遞象素級的數字要快很多.
五、最終關鍵yolov5調用代碼:
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2021/2/20 18:19 # @Author : xiaorun # @Site : # @File : yoloDetect.py # @Software: PyCharm import sys import threading from threading import Thread import time import os import cv2 from yolo import YOLO5 import json,jsonify import requests import flask from flask import request headers = {'Content-Type': 'application/json'} url_addr="http://123.206.106.55:8065/api/video/getPersonNum/" # 創建一個服務,把當前這個python文件當做一個服務 server = flask.Flask(__name__) server.debug = True def gen_detector(url_video): yolo = YOLO5() opt = parseData() yolo.set_config(opt.weights, opt.device, opt.img_size, opt.conf_thres, opt.iou_thres, True) yolo.load_model() camera = cv2.VideoCapture(url_video) # 讀取視頻的fps, 大小 fps = camera.get(cv2.CAP_PROP_FPS) size = (camera.get(cv2.CAP_PROP_FRAME_WIDTH), camera.get(cv2.CAP_PROP_FRAME_HEIGHT)) print("fps: {}\nsize: {}".format(fps, size)) # 讀取視頻時長(幀總數) total = int(camera.get(cv2.CAP_PROP_FRAME_COUNT)) print("[INFO] {} total frames in video".format(total)) ret, frame = camera.read() if ret==False: video_parameter = {"accessKey": "1C7C48F44A3940EBBAQXTC736BF6530342", "code": "0000", "personNum": "video problem.."} response = requests.post(url=url_addr, headers=headers, data=json.dumps(video_parameter)) print(response.json()) max_person=0 while total>0: total=total-1 ret,frame=camera.read() if ret == True: objs = yolo.obj_detect(frame) if max_person<=len(objs): max_person=len(objs) for obj in objs: cls = obj["class"] cor = obj["color"] conf = '%.2f' % obj["confidence"] label = cls + " " x, y, w, h = obj["x"], obj["y"], obj["w"], obj["h"] cv2.rectangle(frame, (int(x), int(y)), (int(x + w), int(y + h)), tuple(cor)) cv2.putText(frame, label, (int(x), int(y)), cv2.FONT_HERSHEY_SIMPLEX, 1, cor, thickness=2) person = "there are {} person ".format(len(objs)) cv2.putText(frame, person, (20, 20), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), thickness=3) video_parameter = {"accessKey": "1C7C48F44A3940EBBAQXTC736BF6530342", "code": "0000", "personNum": str(max_person)} if total==0: response = requests.post(url=url_addr, headers=headers, data=json.dumps(video_parameter)) print(response.json()) cv2.imshow("test",frame) if cv2.waitKey(1)==ord("q"): break @server.route('/video', methods=['post']) def get_video(): if not request.data: # 檢測是否有數據 return ('fail..') video_name= request.data.decode('utf-8') # 獲取到POST過來的數據,因為我這裡傳過來的數據需要轉換一下編碼。根據晶具體情況而定 video_json = json.loads(video_name) print(video_json) accessKey=video_json["accessKey"] if accessKey=="1C7C48F44A3940EBBAQXTC736BF6530342": code=video_json["code"] url_video=video_json["url"] print(url_video) gen_detector(url_video) # 把區獲取到的數據轉為JSON格式。 data_return={"code":200,"data":url_video,"message":"請求成功","sucsess":"true"} return json.dumps(data_return) else: pass # 返回JSON數據。 if __name__ == '__main__': server.run(host='192.168.1.250', port=8888)
客戶端請求測試:
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2021/5/12 15:12 # @Author : xiaorun # @Site : # @File : test_post.py # @Software: PyCharm import requests,json headers = {'Content-Type': 'application/json'} user_info = {"accessKey":"1C7C48F44A3940EBBAQXTC736BF6530342", "code":"N000001", "url":"http:xxxx/video/xxxx.mp4" } r = requests.post("http://8.8.9.76:8888/video",headers=headers, data=json.dumps(user_info)) print (r.text)
到此這篇關於用python實現監控視頻人數統計的文章就介紹到這瞭,更多相關python視頻人數統計內容請搜索WalkonNet以前的文章或繼續瀏覽下面的相關文章希望大傢以後多多支持WalkonNet!
推薦閱讀:
- python request post 列表的方法詳解
- 基於 Python實現雲服務器的CDN域名遠程鑒權配置
- Python 批量操作設備的實現步驟
- Python爬蟲學習之requests的使用教程
- Python爬蟲Requests庫的使用詳情