OpenCV 圖像對比度的實踐
本文主要介紹瞭OpenCV 圖像對比度,具有一定的參考價值,感興趣的可以瞭解一下
實現原理
圖像對比度指的是一幅圖像中明暗區域最亮的白和最暗的黑之間不同亮度層級的測量,即指一幅圖像灰度反差的大小。差異范圍越大代表對比越大,差異范圍越小代表對比越小。設置一個基準值thresh,當percent大於0時,需要令圖像中的顏色對比更強烈,即數值距離thresh越遠,則變化越大;當percent等於1時,對比強到極致,隻有255和0的區分;當percent等於0時,不變;當percent小於0時,對比下降,即令遠離thresh的數值更近些;當percent等於-1時,沒有對比瞭,全是thresh值。
對比度調整算法的實現流程如下:
1.設置調整參數percent,取值為-100到100,類似PS中設置,歸一化後為-1到1。
2.針對圖像所有像素點單個處理。當percent大於等於0時,對比增強,調整後的RGB三通道數值為:
3.若percent小於0時,對比降低,此時調整後的圖像RGB三通道值為:
4.若percent等於1時,大於thresh則等於255,小於則等於0。
至此,圖像實現瞭明度的調整,算法邏輯參考xingyanxiao。C++實現代碼如下。
功能函數代碼
// 對比度 cv::Mat Contrast(cv::Mat src, int percent) { float alpha = percent / 100.f; alpha = max(-1.f, min(1.f, alpha)); cv::Mat temp = src.clone(); int row = src.rows; int col = src.cols; int thresh = 127; for (int i = 0; i < row; ++i) { uchar *t = temp.ptr<uchar>(i); uchar *s = src.ptr<uchar>(i); for (int j = 0; j < col; ++j) { uchar b = s[3 * j]; uchar g = s[3 * j + 1]; uchar r = s[3 * j + 2]; int newb, newg, newr; if (alpha == 1) { t[3 * j + 2] = r > thresh ? 255 : 0; t[3 * j + 1] = g > thresh ? 255 : 0; t[3 * j] = b > thresh ? 255 : 0; continue; } else if (alpha >= 0) { newr = static_cast<int>(thresh + (r - thresh) / (1 - alpha)); newg = static_cast<int>(thresh + (g - thresh) / (1 - alpha)); newb = static_cast<int>(thresh + (b - thresh) / (1 - alpha)); } else { newr = static_cast<int>(thresh + (r - thresh) * (1 + alpha)); newg = static_cast<int>(thresh + (g - thresh) * (1 + alpha)); newb = static_cast<int>(thresh + (b - thresh) * (1 + alpha)); } newr = max(0, min(255, newr)); newg = max(0, min(255, newg)); newb = max(0, min(255, newb)); t[3 * j + 2] = static_cast<uchar>(newr); t[3 * j + 1] = static_cast<uchar>(newg); t[3 * j] = static_cast<uchar>(newb); } } return temp; }
C++測試代碼
#include <opencv2/opencv.hpp> #include <iostream> using namespace cv; using namespace std; cv::Mat Contrast(cv::Mat src, int percent); int main() { cv::Mat src = imread("5.jpg"); cv::Mat result = Contrast(src, 50.f); imshow("original", src); imshow("result", result); waitKey(0); return 0; } // 對比度 cv::Mat Contrast(cv::Mat src, int percent) { float alpha = percent / 100.f; alpha = max(-1.f, min(1.f, alpha)); cv::Mat temp = src.clone(); int row = src.rows; int col = src.cols; int thresh = 127; for (int i = 0; i < row; ++i) { uchar *t = temp.ptr<uchar>(i); uchar *s = src.ptr<uchar>(i); for (int j = 0; j < col; ++j) { uchar b = s[3 * j]; uchar g = s[3 * j + 1]; uchar r = s[3 * j + 2]; int newb, newg, newr; if (alpha == 1) { t[3 * j + 2] = r > thresh ? 255 : 0; t[3 * j + 1] = g > thresh ? 255 : 0; t[3 * j] = b > thresh ? 255 : 0; continue; } else if (alpha >= 0) { newr = static_cast<int>(thresh + (r - thresh) / (1 - alpha)); newg = static_cast<int>(thresh + (g - thresh) / (1 - alpha)); newb = static_cast<int>(thresh + (b - thresh) / (1 - alpha)); } else { newr = static_cast<int>(thresh + (r - thresh) * (1 + alpha)); newg = static_cast<int>(thresh + (g - thresh) * (1 + alpha)); newb = static_cast<int>(thresh + (b - thresh) * (1 + alpha)); } newr = max(0, min(255, newr)); newg = max(0, min(255, newg)); newb = max(0, min(255, newb)); t[3 * j + 2] = static_cast<uchar>(newr); t[3 * j + 1] = static_cast<uchar>(newg); t[3 * j] = static_cast<uchar>(newb); } } return temp; }
測試效果
圖1 原圖
圖2 參數為50的效果圖
圖3 參數為-50的效果圖
通過調整percent可以實現圖像對比度的調整。
到此這篇關於OpenCV 圖像對比度的實踐的文章就介紹到這瞭,更多相關OpenCV 圖像對比度內容請搜索WalkonNet以前的文章或繼續瀏覽下面的相關文章希望大傢以後多多支持WalkonNet!
推薦閱讀:
- OpenCV實現背景分離(證件照背景替換)
- C++ opencv圖像處理實現灰度變換示例
- C++ OpenCV實現圖像雙三次插值算法詳解
- openCV實現圖像分割
- C++ Opencv自寫函數實現膨脹腐蝕處理技巧