使用 OpenCV-Python 識別答題卡判卷功能
任務
識別用相機拍下來的答題卡,並判斷最終得分(假設正確答案是B, E, A, D, B)
主要步驟
- 輪廓識別——答題卡邊緣識別
- 透視變換——提取答題卡主體
- 輪廓識別——識別出所有圓形選項,剔除無關輪廓
- 檢測每一行選擇的是哪一項,並將結果儲存起來,記錄正確的個數
- 計算最終得分並在圖中標註
分步實現
輪廓識別——答題卡邊緣識別
輸入圖像
import cv2 as cv import numpy as np # 正確答案 right_key = {0: 1, 1: 4, 2: 0, 3: 3, 4: 1} # 輸入圖像 img = cv.imread('./images/test_01.jpg') img_copy = img.copy() img_gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY) cvshow('img-gray', img_gray)
圖像預處理
# 圖像預處理 # 高斯降噪 img_gaussian = cv.GaussianBlur(img_gray, (5, 5), 1) cvshow('gaussianblur', img_gaussian) # canny邊緣檢測 img_canny = cv.Canny(img_gaussian, 80, 150) cvshow('canny', img_canny)
輪廓識別——答題卡邊緣識別
# 輪廓識別——答題卡邊緣識別 cnts, hierarchy = cv.findContours(img_canny, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE) cv.drawContours(img_copy, cnts, -1, (0, 0, 255), 3) cvshow('contours-show', img_copy)
透視變換——提取答題卡主體
對每個輪廓進行擬合,將多邊形輪廓變為四邊形
docCnt = None # 確保檢測到瞭 if len(cnts) > 0: # 根據輪廓大小進行排序 cnts = sorted(cnts, key=cv.contourArea, reverse=True) # 遍歷每一個輪廓 for c in cnts: # 近似 peri = cv.arcLength(c, True) # arclength 計算一段曲線的長度或者閉合曲線的周長; # 第一個參數輸入一個二維向量,第二個參數表示計算曲線是否閉合 approx = cv.approxPolyDP(c, 0.02 * peri, True) # 用一條頂點較少的曲線/多邊形來近似曲線/多邊形,以使它們之間的距離<=指定的精度; # c是需要近似的曲線,0.02*peri是精度的最大值,True表示曲線是閉合的 # 準備做透視變換 if len(approx) == 4: docCnt = approx break
透視變換——提取答題卡主體
# 透視變換——提取答題卡主體 docCnt = docCnt.reshape(4, 2) warped = four_point_transform(img_gray, docCnt) cvshow('warped', warped)
def four_point_transform(img, four_points): rect = order_points(four_points) (tl, tr, br, bl) = rect # 計算輸入的w和h的值 widthA = np.sqrt((tr[0] - tl[0]) ** 2 + (tr[1] - tl[1]) ** 2) widthB = np.sqrt((br[0] - bl[0]) ** 2 + (br[1] - bl[1]) ** 2) maxWidth = max(int(widthA), int(widthB)) heightA = np.sqrt((tl[0] - bl[0]) ** 2 + (tl[1] - bl[1]) ** 2) heightB = np.sqrt((tr[0] - br[0]) ** 2 + (tr[1] - br[1]) ** 2) maxHeight = max(int(heightA), int(heightB)) # 變換後對應的坐標位置 dst = np.array([ [0, 0], [maxWidth - 1, 0], [maxWidth - 1, maxHeight - 1], [0, maxHeight - 1]], dtype='float32') # 最主要的函數就是 cv2.getPerspectiveTransform(rect, dst) 和 cv2.warpPerspective(image, M, (maxWidth, maxHeight)) M = cv.getPerspectiveTransform(rect, dst) warped = cv.warpPerspective(img, M, (maxWidth, maxHeight)) return warped def order_points(points): res = np.zeros((4, 2), dtype='float32') # 按照從前往後0,1,2,3分別表示左上、右上、右下、左下的順序將points中的數填入res中 # 將四個坐標x與y相加,和最大的那個是右下角的坐標,最小的那個是左上角的坐標 sum_hang = points.sum(axis=1) res[0] = points[np.argmin(sum_hang)] res[2] = points[np.argmax(sum_hang)] # 計算坐標x與y的離散插值np.diff() diff = np.diff(points, axis=1) res[1] = points[np.argmin(diff)] res[3] = points[np.argmax(diff)] # 返回result return res
輪廓識別——識別出選項
# 輪廓識別——識別出選項 thresh = cv.threshold(warped, 0, 255, cv.THRESH_BINARY_INV | cv.THRESH_OTSU)[1] cvshow('thresh', thresh) thresh_cnts, _ = cv.findContours(thresh, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE) w_copy = warped.copy() cv.drawContours(w_copy, thresh_cnts, -1, (0, 0, 255), 2) cvshow('warped_contours', w_copy) questionCnts = [] # 遍歷,挑出選項的cnts for c in thresh_cnts: (x, y, w, h) = cv.boundingRect(c) ar = w / float(h) # 根據實際情況指定標準 if w >= 20 and h >= 20 and ar >= 0.9 and ar <= 1.1: questionCnts.append(c) # 檢查是否挑出瞭選項 w_copy2 = warped.copy() cv.drawContours(w_copy2, questionCnts, -1, (0, 0, 255), 2) cvshow('questionCnts', w_copy2)
成功將無關輪廓剔除
檢測每一行選擇的是哪一項,並將結果儲存起來,記錄正確的個數
# 檢測每一行選擇的是哪一項,並將結果儲存在元組bubble中,記錄正確的個數correct # 按照從上到下t2b對輪廓進行排序 questionCnts = sort_contours(questionCnts, method="t2b")[0] correct = 0 # 每行有5個選項 for (i, q) in enumerate(np.arange(0, len(questionCnts), 5)): # 排序 cnts = sort_contours(questionCnts[q:q+5])[0] bubble = None # 得到每一個選項的mask並填充,與正確答案進行按位與操作獲得重合點數 for (j, c) in enumerate(cnts): mask = np.zeros(thresh.shape, dtype='uint8') cv.drawContours(mask, [c], -1, 255, -1) # cvshow('mask', mask) # 通過按位與操作得到thresh與mask重合部分的像素數量 bitand = cv.bitwise_and(thresh, thresh, mask=mask) totalPixel = cv.countNonZero(bitand) if bubble is None or bubble[0] < totalPixel: bubble = (totalPixel, j) k = bubble[1] color = (0, 0, 255) if k == right_key[i]: correct += 1 color = (0, 255, 0) # 繪圖 cv.drawContours(warped, [cnts[right_key[i]]], -1, color, 3) cvshow('final', warped)
def sort_contours(contours, method="l2r"): # 用於給輪廓排序,l2r, r2l, t2b, b2t reverse = False i = 0 if method == "r2l" or method == "b2t": reverse = True if method == "t2b" or method == "b2t": i = 1 boundingBoxes = [cv.boundingRect(c) for c in contours] (contours, boundingBoxes) = zip(*sorted(zip(contours, boundingBoxes), key=lambda a: a[1][i], reverse=reverse)) return contours, boundingBoxes
用透過mask的像素的個數來判斷考生選擇的是哪個選項
計算最終得分並在圖中標註
# 計算最終得分並在圖中標註 score = (correct / 5.0) * 100 print(f"Score: {score}%") cv.putText(warped, f"Score: {score}%", (10, 30), cv.FONT_HERSHEY_SIMPLEX, 0.9, (0, 0, 255), 2) cv.imshow("Original", img) cv.imshow("Exam", warped) cv.waitKey(0)
完整代碼
import cv2 as cv import numpy as np def cvshow(name, img): cv.imshow(name, img) cv.waitKey(0) cv.destroyAllWindows() def four_point_transform(img, four_points): rect = order_points(four_points) (tl, tr, br, bl) = rect # 計算輸入的w和h的值 widthA = np.sqrt((tr[0] - tl[0]) ** 2 + (tr[1] - tl[1]) ** 2) widthB = np.sqrt((br[0] - bl[0]) ** 2 + (br[1] - bl[1]) ** 2) maxWidth = max(int(widthA), int(widthB)) heightA = np.sqrt((tl[0] - bl[0]) ** 2 + (tl[1] - bl[1]) ** 2) heightB = np.sqrt((tr[0] - br[0]) ** 2 + (tr[1] - br[1]) ** 2) maxHeight = max(int(heightA), int(heightB)) # 變換後對應的坐標位置 dst = np.array([ [0, 0], [maxWidth - 1, 0], [maxWidth - 1, maxHeight - 1], [0, maxHeight - 1]], dtype='float32') # 最主要的函數就是 cv2.getPerspectiveTransform(rect, dst) 和 cv2.warpPerspective(image, M, (maxWidth, maxHeight)) M = cv.getPerspectiveTransform(rect, dst) warped = cv.warpPerspective(img, M, (maxWidth, maxHeight)) return warped def order_points(points): res = np.zeros((4, 2), dtype='float32') # 按照從前往後0,1,2,3分別表示左上、右上、右下、左下的順序將points中的數填入res中 # 將四個坐標x與y相加,和最大的那個是右下角的坐標,最小的那個是左上角的坐標 sum_hang = points.sum(axis=1) res[0] = points[np.argmin(sum_hang)] res[2] = points[np.argmax(sum_hang)] # 計算坐標x與y的離散插值np.diff() diff = np.diff(points, axis=1) res[1] = points[np.argmin(diff)] res[3] = points[np.argmax(diff)] # 返回result return res def sort_contours(contours, method="l2r"): # 用於給輪廓排序,l2r, r2l, t2b, b2t reverse = False i = 0 if method == "r2l" or method == "b2t": reverse = True if method == "t2b" or method == "b2t": i = 1 boundingBoxes = [cv.boundingRect(c) for c in contours] (contours, boundingBoxes) = zip(*sorted(zip(contours, boundingBoxes), key=lambda a: a[1][i], reverse=reverse)) return contours, boundingBoxes # 正確答案 right_key = {0: 1, 1: 4, 2: 0, 3: 3, 4: 1} # 輸入圖像 img = cv.imread('./images/test_01.jpg') img_copy = img.copy() img_gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY) cvshow('img-gray', img_gray) # 圖像預處理 # 高斯降噪 img_gaussian = cv.GaussianBlur(img_gray, (5, 5), 1) cvshow('gaussianblur', img_gaussian) # canny邊緣檢測 img_canny = cv.Canny(img_gaussian, 80, 150) cvshow('canny', img_canny) # 輪廓識別——答題卡邊緣識別 cnts, hierarchy = cv.findContours(img_canny, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE) cv.drawContours(img_copy, cnts, -1, (0, 0, 255), 3) cvshow('contours-show', img_copy) docCnt = None # 確保檢測到瞭 if len(cnts) > 0: # 根據輪廓大小進行排序 cnts = sorted(cnts, key=cv.contourArea, reverse=True) # 遍歷每一個輪廓 for c in cnts: # 近似 peri = cv.arcLength(c, True) # arclength 計算一段曲線的長度或者閉合曲線的周長; # 第一個參數輸入一個二維向量,第二個參數表示計算曲線是否閉合 approx = cv.approxPolyDP(c, 0.02 * peri, True) # 用一條頂點較少的曲線/多邊形來近似曲線/多邊形,以使它們之間的距離<=指定的精度; # c是需要近似的曲線,0.02*peri是精度的最大值,True表示曲線是閉合的 # 準備做透視變換 if len(approx) == 4: docCnt = approx break # 透視變換——提取答題卡主體 docCnt = docCnt.reshape(4, 2) warped = four_point_transform(img_gray, docCnt) cvshow('warped', warped) # 輪廓識別——識別出選項 thresh = cv.threshold(warped, 0, 255, cv.THRESH_BINARY_INV | cv.THRESH_OTSU)[1] cvshow('thresh', thresh) thresh_cnts, _ = cv.findContours(thresh, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE) w_copy = warped.copy() cv.drawContours(w_copy, thresh_cnts, -1, (0, 0, 255), 2) cvshow('warped_contours', w_copy) questionCnts = [] # 遍歷,挑出選項的cnts for c in thresh_cnts: (x, y, w, h) = cv.boundingRect(c) ar = w / float(h) # 根據實際情況指定標準 if w >= 20 and h >= 20 and ar >= 0.9 and ar <= 1.1: questionCnts.append(c) # 檢查是否挑出瞭選項 w_copy2 = warped.copy() cv.drawContours(w_copy2, questionCnts, -1, (0, 0, 255), 2) cvshow('questionCnts', w_copy2) # 檢測每一行選擇的是哪一項,並將結果儲存在元組bubble中,記錄正確的個數correct # 按照從上到下t2b對輪廓進行排序 questionCnts = sort_contours(questionCnts, method="t2b")[0] correct = 0 # 每行有5個選項 for (i, q) in enumerate(np.arange(0, len(questionCnts), 5)): # 排序 cnts = sort_contours(questionCnts[q:q+5])[0] bubble = None # 得到每一個選項的mask並填充,與正確答案進行按位與操作獲得重合點數 for (j, c) in enumerate(cnts): mask = np.zeros(thresh.shape, dtype='uint8') cv.drawContours(mask, [c], -1, 255, -1) cvshow('mask', mask) # 通過按位與操作得到thresh與mask重合部分的像素數量 bitand = cv.bitwise_and(thresh, thresh, mask=mask) totalPixel = cv.countNonZero(bitand) if bubble is None or bubble[0] < totalPixel: bubble = (totalPixel, j) k = bubble[1] color = (0, 0, 255) if k == right_key[i]: correct += 1 color = (0, 255, 0) # 繪圖 cv.drawContours(warped, [cnts[right_key[i]]], -1, color, 3) cvshow('final', warped) # 計算最終得分並在圖中標註 score = (correct / 5.0) * 100 print(f"Score: {score}%") cv.putText(warped, f"Score: {score}%", (10, 30), cv.FONT_HERSHEY_SIMPLEX, 0.9, (0, 0, 255), 2) cv.imshow("Original", img) cv.imshow("Exam", warped) cv.waitKey(0)
到此這篇關於使用 OpenCV-Python 識別答題卡判卷的文章就介紹到這瞭,更多相關OpenCV Python 識別答題卡判卷內容請搜索WalkonNet以前的文章或繼續瀏覽下面的相關文章希望大傢以後多多支持WalkonNet!
推薦閱讀:
- 基於Opencv圖像識別實現答題卡識別示例詳解
- python OpenCV實現答題卡識別判卷
- Python使用Opencv實現邊緣檢測以及輪廓檢測的實現
- Opencv 圖片的OCR識別的實戰示例
- 基於python使用OpenCV進行物體輪廓排序