基於R語言for循環的替換方案
R語言中,for循環運行比較慢
for(i in 1:1000){ print(i^2) }
補充:R語言:for循環使用小結
基本結構展示:
vals =c(5,6,7) for(v in vals){ print(v) } #即把大括號裡的內容對vals裡的每一個值都循環run一遍
實例展示:
1. paste() 命令是把幾個字符連接起來
如paste(“A”,”B”,”C”,sep=” “)得到的就是“A B C”,在次基礎上寫如下for loop:
partnumber = c(1,2,5,78) for(i in partnumber){ print(paste("participant number",i, sep = " ")) } #就可以得到一串參與者號碼,根據上面給定的幾個值, 從"participant number 1" 到"participant number 8"
2. 雙重loop
partnumber = c(1,2,5,78) institution =c("cancer center", "RMH", "Florey") for(i in partnumber){ for(j in institution){ print(paste("participant number",i,", institution",j,sep = " ")) } } # 先對j循環,後對i循環,得到如下結果 [1] "participant number 1 , institution cancer center" [1] "participant number 1 , institution RMH" [1] "participant number 1 , institution Florey" [1] "participant number 2 , institution cancer center" [1] "participant number 2 , institution RMH" [1] "participant number 2 , institution Florey" [1] "participant number 5 , institution cancer center" [1] "participant number 5 , institution RMH" [1] "participant number 5 , institution Florey" [1] "participant number 78 , institution cancer center" [1] "participant number 78 , institution RMH" [1] "participant number 78 , institution Florey" # 兩個loop的話,output得放最中心的loop裡面,如果隻要要第一層loop,就放在靠外一層括號裡面,第二層括號就保留最後的一個值
3. 數據庫實例演示
Titanic=read.csv("https://goo.gl/4Gqsnz") #從網絡讀取數據<0.2, 0.2-0.6還是>0.6。
目的:看不同艙位(Pclass)和不同性別(Sex)的人的生存率是
A<- sort(unique(Pclass)) #sort可以把類別按大小順序排,unique()命令是把分類變量的種類提取出來 B<- sort(unique(Sex)) for(i in A){ for(j in B){ if(mean(Survived[Pclass==i&Sex==j])<0.2){ print(paste("for class",i,"sex",j,"mean survival is less than 0.2")) } else if (mean(Survived[Pclass==i&Sex==j])>0.6){ print(paste("for class",i,"sex",j,"mean survival is more than 0.6")) } else { print(paste("for class",i,"sex",j,"mean survival is between 0.2 and 0.6"))} } }
結果如下:
[1] “for class 1 sex female mean survival is more than 0.6”
[1] “for class 1 sex male mean survival is between 0.2 and 0.6”
[1] “for class 2 sex female mean survival is more than 0.6”
[1] “for class 2 sex male mean survival is less than 0.2”
[1] “for class 3 sex female mean survival is between 0.2 and 0.6”
[1] “for class 3 sex male mean survival is less than 0.2”
補充:R語言for循環批量生成變量,並且賦值
看代碼~
rm(list=ls()) data <- read.table("MS_identified_information.txt",header = T,sep = "\t",quote="",na.strings = "",row.names = 1,comment.char = "") name1 <- paste("H1299",sep = "_",c(1:3)) name2 <- paste("Metf",sep = "_",c(1:3)) name3 <- paste("OEMetf",sep = "_",c(1:3)) name <- data.frame(name1,name2,name3) mean.data=data.frame(row.names(data)) for (i in 1:3){ tmp <- subset(data,select = as.vector.factor(name[,i])) #篩選特定的樣本 mean_ <- as.data.frame(apply(tmp, 1, mean)) #行求平均值 //assign()功能就是對變量進行賦值如i=1時,df1=mean_ //把三次結果組合起來 mean.data <- cbind.data.frame(mean.data,assign(paste("df", i, sep=""), mean_)) //這裡沒有體現出變量,實際上生成瞭df1,df2,df3結果 } colnames(mean.data) <- c("ID","H1299","Metf","OEMetf") write.table(mean.data,file="MS_mean.xls",row.names = FALSE,sep = "\t",na="")
以上為個人經驗,希望能給大傢一個參考,也希望大傢多多支持WalkonNet。如有錯誤或未考慮完全的地方,望不吝賜教。
推薦閱讀:
- None Found