python深度學習tensorflow訓練好的模型進行圖像分類

正文

谷歌在大型圖像數據庫ImageNet上訓練好瞭一個Inception-v3模型,這個模型我們可以直接用來進來圖像分類。

下載鏈接: https://pan.baidu.com/s/1XGfwYer5pIEDkpM3nM6o2A

提取碼: hu66

下載完解壓後,得到幾個文件:

其中

classify_image_graph_def.pb 文件就是訓練好的Inception-v3模型。

imagenet_synset_to_human_label_map.txt是類別文件。

隨機找一張圖片

對這張圖片進行識別,看它屬於什麼類?

代碼如下:先創建一個類NodeLookup來將softmax概率值映射到標簽上。

然後創建一個函數create_graph()來讀取模型。

讀取圖片進行分類識別

# -*- coding: utf-8 -*-
import tensorflow as tf
import numpy as np
import re
import os
model_dir='D:/tf/model/'
image='d:/cat.jpg'
#將類別ID轉換為人類易讀的標簽
class NodeLookup(object):
  def __init__(self,
               label_lookup_path=None,
               uid_lookup_path=None):
    if not label_lookup_path:
      label_lookup_path = os.path.join(
          model_dir, 'imagenet_2012_challenge_label_map_proto.pbtxt')
    if not uid_lookup_path:
      uid_lookup_path = os.path.join(
          model_dir, 'imagenet_synset_to_human_label_map.txt')
    self.node_lookup = self.load(label_lookup_path, uid_lookup_path)
  def load(self, label_lookup_path, uid_lookup_path):
    if not tf.gfile.Exists(uid_lookup_path):
      tf.logging.fatal('File does not exist %s', uid_lookup_path)
    if not tf.gfile.Exists(label_lookup_path):
      tf.logging.fatal('File does not exist %s', label_lookup_path)
    # Loads mapping from string UID to human-readable string
    proto_as_ascii_lines = tf.gfile.GFile(uid_lookup_path).readlines()
    uid_to_human = {}
    p = re.compile(r'[n\d]*[ \S,]*')
    for line in proto_as_ascii_lines:
      parsed_items = p.findall(line)
      uid = parsed_items[0]
      human_string = parsed_items[2]
      uid_to_human[uid] = human_string
    # Loads mapping from string UID to integer node ID.
    node_id_to_uid = {}
    proto_as_ascii = tf.gfile.GFile(label_lookup_path).readlines()
    for line in proto_as_ascii:
      if line.startswith('  target_class:'):
        target_class = int(line.split(': ')[1])
      if line.startswith('  target_class_string:'):
        target_class_string = line.split(': ')[1]
        node_id_to_uid[target_class] = target_class_string[1:-2]
    # Loads the final mapping of integer node ID to human-readable string
    node_id_to_name = {}
    for key, val in node_id_to_uid.items():
      if val not in uid_to_human:
        tf.logging.fatal('Failed to locate: %s', val)
      name = uid_to_human[val]
      node_id_to_name[key] = name
    return node_id_to_name
  def id_to_string(self, node_id):
    if node_id not in self.node_lookup:
      return ''
    return self.node_lookup[node_id]
#讀取訓練好的Inception-v3模型來創建graph
def create_graph():
  with tf.gfile.FastGFile(os.path.join(
      model_dir, 'classify_image_graph_def.pb'), 'rb') as f:
    graph_def = tf.GraphDef()
    graph_def.ParseFromString(f.read())
    tf.import_graph_def(graph_def, name='')
#讀取圖片
image_data = tf.gfile.FastGFile(image, 'rb').read()
#創建graph
create_graph()
sess=tf.Session()
#Inception-v3模型的最後一層softmax的輸出
softmax_tensor= sess.graph.get_tensor_by_name('softmax:0')
#輸入圖像數據,得到softmax概率值(一個shape=(1,1008)的向量)
predictions = sess.run(softmax_tensor,{'DecodeJpeg/contents:0': image_data})
#(1,1008)->(1008,)
predictions = np.squeeze(predictions)
# ID --> English string label.
node_lookup = NodeLookup()
#取出前5個概率最大的值(top-5)
top_5 = predictions.argsort()[-5:][::-1]
for node_id in top_5:
  human_string = node_lookup.id_to_string(node_id)
  score = predictions[node_id]
  print('%s (score = %.5f)' % (human_string, score))
sess.close()

最後輸出

tiger cat (score = 0.40316)
Egyptian cat (score = 0.21686)
tabby, tabby cat (score = 0.21348)
lynx, catamount (score = 0.01403)
Persian cat (score = 0.00394)

以上就是python深度學習tensorflow訓練好的模型進行圖像分類的詳細內容,更多關於tensorflow訓練模型圖像分類的資料請關註WalkonNet其它相關文章!

推薦閱讀: