Python+OpenCV實現圖像識別替換功能詳解

OpenCV-Python是一個Python庫,旨在解決計算機視覺問題。

OpenCV是一個開源的計算機視覺庫,1999年由英特爾的Gary Bradski啟動。Bradski在訪學過程中註意到,在很多優秀大學的實驗室中,都有非常完備的內部公開的計算機視覺接口。這些接口從一屆學生傳到另一屆學生,對於剛入門的新人來說,使用這些接口比重復造輪子方便多瞭。這些接口可以讓他們在之前的基礎上更有效地開展工作。OpenCV正是基於為計算機視覺提供通用接口這一目標而被策劃的。

安裝opencv

pip3 install -i https://pypi.doubanio.com/simple/ opencv-python

思路:

1、首先區分三張圖片:

base圖片代表初始化圖片;

template圖片代表需要在大圖中匹配的圖片;

white圖片為需要替換的圖片。

2、然後template圖片逐像素縮小匹配,設定閾值,匹配度到達閾值的圖片,判定為在初始圖片中;否則忽略掉。

3、匹配到最大閾值的地方,返回該區域的位置(x,y)

4、然後用white圖片resize到相應的大小,填補到目標區域。

match函數:

"""檢查模板圖片中是否包含目標圖片"""
def make_cv2(photo1, photo2):
    global x, y, w, h, num_1,flag
    starttime = datetime.datetime.now()
    #讀取base圖片
    img_rgb = cv2.imread(f'{photo1}')
    #讀取template圖片
    template = cv2.imread(f'{photo2}')
    h, w = template.shape[:-1]
    print('初始寬高', h, w)
    res = cv2.matchTemplate(img_rgb, template, cv2.TM_CCOEFF_NORMED)
    print('初始最大相似度', res.max())
    threshold = res.max()
    """,相似度小於0.2的,不予考慮;相似度在[0.2-0.75]之間的,逐漸縮小圖片"""
    print(threshold)
    while threshold >= 0.1 and threshold <= 0.83:
        if w >= 20 and h >= 20:
            w = w - 1
            h = h - 1
            template = cv2.resize(
                template, (w, h), interpolation=cv2.INTER_CUBIC)
            res = cv2.matchTemplate(img_rgb, template, cv2.TM_CCOEFF_NORMED)
            threshold = res.max()
            print('寬度:', w, '高度:', h, '相似度:', threshold)
        else:
            break
    """達到0.75覆蓋之前的圖片"""
    if threshold > 0.8:
        loc = np.where(res >= threshold)
        x = int(loc[1])
        y = int(loc[0])
        print('覆蓋圖片左上角坐標:', x, y)
        for pt in zip(*loc[::-1]):
            cv2.rectangle(
                img_rgb, pt, (pt[0] + w, pt[1] + h), (255, 144, 51), 1)
        num_1 += 1
        endtime = datetime.datetime.now()
        print("耗時:", endtime - starttime)
        overlay_transparent(x, y, photo1, photo3)
    else:
        flag = False

replace函數:

"""將目標圖片鑲嵌到指定坐標位置"""
def overlay_transparent(x, y, photo1, photo3):
    #覆蓋圖片的時候上下移動的像素空間
    y += 4
    global w, h, num_2
    background = cv2.imread(f'{photo1}')
    overlay = cv2.imread(f'{photo3}')
    """縮放圖片大小"""
    overlay = cv2.resize(overlay, (w, h), interpolation=cv2.INTER_CUBIC)
    background_width = background.shape[1]
    background_height = background.shape[0]
    if x >= background_width or y >= background_height:
        return background
    h, w = overlay.shape[0], overlay.shape[1]
    if x + w > background_width:
        w = background_width - x
        overlay = overlay[:, :w]
    if y + h > background_height:
        h = background_height - y
        overlay = overlay[:h]
    if overlay.shape[2] < 4:
        overlay = np.concatenate([overlay, np.ones((overlay.shape[0], overlay.shape[1], 1), dtype=overlay.dtype) * 255],axis=2,)
    overlay_image = overlay[..., :3]
    mask = overlay[..., 3:] / 255.0
    background[y:y + h,x:x + w] = (1.0 - mask) * background[y:y + h,x:x + w] + mask * overlay_image
    # path = 'result'
    path = ''
    cv2.imwrite(os.path.join(path, f'1.png'), background)
    num_2 += 1
    print('插入成功。')
    init()

每次執行需要初始化x,y(圖片匹配初始位置參數),w,h(圖片縮放初始寬高)

x = 0
y = 0
w = 0
h = 0
flag = True
threshold = 0
template = ''
num_1 = 0
num_2 = 0
photo3 = ''
"""參數初始化"""
def init():
    global x, y, w, h, threshold, template,flag
    x = 0
    y = 0
    w = 0
    h = 0
    threshold = 0
    template = ''

完整代碼

import cv2
import datetime
import os
import numpy as np
x = 0
y = 0
w = 0
h = 0
flag = True
threshold = 0
template = ''
num_1 = 0
num_2 = 0
photo3 = ''
"""參數初始化"""
def init():
    global x, y, w, h, threshold, template,flag
    x = 0
    y = 0
    w = 0
    h = 0
    threshold = 0
    template = ''

"""檢查模板圖片中是否包含目標圖片"""
def make_cv2(photo1, photo2):
    global x, y, w, h, num_1,flag
    starttime = datetime.datetime.now()
    img_rgb = cv2.imread(f'{photo1}')
    template = cv2.imread(f'{photo2}')
    h, w = template.shape[:-1]
    print('初始寬高', h, w)
    res = cv2.matchTemplate(img_rgb, template, cv2.TM_CCOEFF_NORMED)
    print('初始最大相似度', res.max())
    threshold = res.max()
    """,相似度小於0.2的,不予考慮;相似度在[0.2-0.75]之間的,逐漸縮小圖片"""
    print(threshold)
    while threshold >= 0.1 and threshold <= 0.83:
        if w >= 20 and h >= 20:
            w = w - 1
            h = h - 1
            template = cv2.resize(
                template, (w, h), interpolation=cv2.INTER_CUBIC)
            res = cv2.matchTemplate(img_rgb, template, cv2.TM_CCOEFF_NORMED)
            threshold = res.max()
            print('寬度:', w, '高度:', h, '相似度:', threshold)
        else:
            break
    """達到0.75覆蓋之前的圖片"""
    if threshold > 0.8:
        loc = np.where(res >= threshold)
        x = int(loc[1])
        y = int(loc[0])
        print('覆蓋圖片左上角坐標:', x, y)
        for pt in zip(*loc[::-1]):
            cv2.rectangle(
                img_rgb, pt, (pt[0] + w, pt[1] + h), (255, 144, 51), 1)
        num_1 += 1
        endtime = datetime.datetime.now()
        print("耗時:", endtime - starttime)
        overlay_transparent(x, y, photo1, photo3)
    else:
        flag = False


"""將目標圖片鑲嵌到指定坐標位置"""
def overlay_transparent(x, y, photo1, photo3):
    y += 0
    global w, h, num_2
    background = cv2.imread(f'{photo1}')
    overlay = cv2.imread(f'{photo3}')
    """縮放圖片大小"""
    overlay = cv2.resize(overlay, (w, h), interpolation=cv2.INTER_CUBIC)
    background_width = background.shape[1]
    background_height = background.shape[0]
    if x >= background_width or y >= background_height:
        return background
    h, w = overlay.shape[0], overlay.shape[1]
    if x + w > background_width:
        w = background_width - x
        overlay = overlay[:, :w]
    if y + h > background_height:
        h = background_height - y
        overlay = overlay[:h]
    if overlay.shape[2] < 4:
        overlay = np.concatenate([overlay, np.ones((overlay.shape[0], overlay.shape[1], 1), dtype=overlay.dtype) * 255],axis=2,)
    overlay_image = overlay[..., :3]
    mask = overlay[..., 3:] / 255.0
    background[y:y + h,x:x + w] = (1.0 - mask) * background[y:y + h,x:x + w] + mask * overlay_image
    # path = 'result'
    path = ''
    cv2.imwrite(os.path.join(path, f'1.png'), background)
    num_2 += 1
    print('插入成功。')
    init()


if __name__ == "__main__":
    photo1 = "1.png"
    photo2 = "3.png"
    photo3 = "white.png"

    while flag == True:
        make_cv2(photo1, photo2)
        overlay_transparent(x, y, photo1, photo3)

執行結果:

到此這篇關於Python+OpenCV實現圖像識別替換功能詳解的文章就介紹到這瞭,更多相關Python OpenCV圖像識別替換內容請搜索WalkonNet以前的文章或繼續瀏覽下面的相關文章希望大傢以後多多支持WalkonNet!

推薦閱讀: